
CALCUL DIFFÉRENTIEL 2

FICHE 3: SURFACES PARAMÉTRÉES

Exercice 1. Calculer l'aire de la fenêtre de Viviani, qui est l'intersection d'une sphère de rayon R centrée en l'origine et d'un cylindre vertical s'appuyant sur un un cercle dans le plan horiztonal, de diamètre R et ayant pour extrémité (et non pas centre) l'origine.

Exercice 2. Trouver les géodésiques d'un cylindre.

Exercice 3. Soit \mathcal{H} le paraboloïde hyperbolique d'équation z=xy dans \mathbb{R}^3 et soit $P=(x_0,y_0,z_0)$ un point dessus.

- (1) Trouver l'espace tangent à \mathcal{H} en P, et trouver l'intersection de cet espace tangent avec \mathcal{H} .
- (2) Donner un vecteur normal unitaire à \mathcal{H} en P.
- (3) Si P = (0,0,0), décrire l'interstection de $\mathcal H$ avec chaque plan qui contient la normale en P.
- (4) Parmi les courbes obtenues, quelles sont celles dont la courbure en (0,0,0) est maximale?