THÉORIE DE GALOIS

FICHE II: EXTENSIONS NORMALES

Exercice 1. Soit K un corps de caractéristique 0 et Ω/K une extension algébrique. Supposons que tout polynôme non constant dans K[X] admette une racine. Montrons que Ω est une clôture algébrique de K.

- (1) Soit P un polynôme irréductible sur K et soit L un corps de décomposition de P. Montrer que L/K est monogène.
- (2) En déduire qu'il existe un morphisme $L \to \Omega$ d'extensions de K.
- (3) Montrer que P est scindé dans Ω .
- (4) En déduire que Ω est une clôture algébrique de K.

Exercice 2. Donner un exemple de corps $K \subset L \subset M$ où L/K et M/L sont normales, mais pas M/K.

Exercice 3. Montrer que toute extension quadratique est normale, mais que c'est déjà faux pour une extension de degré 3.

Exercice 4. Calculer les degrés des extensions de \mathbb{Q} de décomposition des polynômes suivants : $X^3 - 1$, $X^6 - 1$, $X^4 - 7$, $X^3 - X^2 - X - 2$, $X^5 + X^4 + \cdots + X + 1$, $X^4 + 1$.

Exercice 5. Soit p un nombre premier et soit $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ le corps fini à p éléments. Soit $q = p^n$ une puissance de p. Le but de cet exercice est de montrer qu'il existe un seul corps fini à q éléments (à isomorphisme près), noté \mathbb{F}_q et que tout corps fini est (isomorphe à) \mathbb{F}_q pour un certain $q = p^n$.

- (1) Soit K un corps fini de caractéristique p. En considérant sa structure de \mathbb{F}_p -espace vectoriel, montrer qu'il a $q = p^n$ éléments pour un $n \in \mathbb{N} \setminus \{0\}$.
- (2) On considère la structure de groupe de K^* (par multiplication). Montrer que tout élément x de K^* vérifie $x^{q-1}=1$.
- (3) En déduire que K est le corps de décomposition de $X^q X$.
- (4) Conclure l'unicité de K à q éléments comme annoncé.
- (5) Montrer que dans une extension de décomposition, $X^q X$ a toutes ses racines distinctes.
- (6) Montrer que l'ensemble de ces racines forme un sous-corps de cette extension de décomposition, puis qu'ils sont en fait égaux.
- (7) Conclure l'existence d'un corps à q éléments.

Exercice 6. On considère le nombre $\alpha = \sqrt{3 + \sqrt{3}}$.

(1) Trouver le polynôme minimal P de α et en déduire le degré de $\mathbb{Q}(\alpha)$ sur \mathbb{Q} .

- (2) On appellera β une racine de P différente de $\pm \alpha$. Montrer que le corps de décomposition de P vaut $E=\mathbb{Q}(\alpha,\beta)$.
- (3) Montrer que E est aussi $\mathbb{Q}(\alpha,\sqrt{2})$. En déduire le degré de E. Indication : on pourra calculer $\alpha\beta$ et vérifier que $\sqrt{2}\in E$.

Exercice 7. Même exercice avec le nombre $\alpha=\sqrt[3]{2+\sqrt{2}}$. Notant j une racine primitive cubique de l'unité, on pourra voir que $\mathbb{Q}(\alpha,\sqrt[3]{2},j)$ est le corps de décomposition du polynôme minimal de α . On pourra admettre que $\sqrt[3]{2}\notin\mathbb{Q}(\alpha)$.