II. Groupe de Galois

Baptiste Calmès

19 février 2021

Table des matières

1	Plongements et groupe de Galois	2
2	Permutations de racines	2
3	Correspondance	3
4	Extensions classiques	5

1 Plongements et groupe de Galois

Soient L et M deux extensions de K. Notons $\operatorname{Hom}_K(L,M)$ l'ensemble des morphismes d'extensions (i.e. de K-algèbres) de L vers M. Lorsqu'on veut insister sur les morphismes $\phi: K \hookrightarrow L$ et $\psi: K \hookrightarrow M$ qui donnent les extensions, on écrit $\operatorname{Hom}_K(\phi L, \psi M)$. Si [L:K] est fini, alors tout endomorphisme de L laissant K fixe est automatiquement bijectif (puisqu'injectif), donc $\operatorname{Hom}_K(L,L) = \operatorname{Aut}_K(L)$, le groupe des automorphismes de l'extension L/K.

1.1 Définition (Groupe de Galois). Soit L/K une extension. On appelle *groupe de Galois* de l'extension L/K le groupe des automorphismes de L laissant K fixe, autrement dit l'ensemble $\operatorname{Aut}_K(L)$ muni de la loi de composition des applications. On le note $\operatorname{Gal}(L/K)$.

Dans cette partie, $\omega: K \hookrightarrow \Omega$ est une clôture algébrique de K.

- **1.2 Lemme.** Une extension L/K finie est normale si et seulement si tous les éléments de $\mathrm{Hom}_K(L,\Omega)$ ont la même image dans Ω .
- **1.3 Corollaire.** Une extension finie L/K est normale si et seulement si pour toute extension finie M/K, tous les morphismes d'extensions $L \to M$ ont même image.
- **1.4 Corollaire.** Soit L/K une extension normale. Alors tout automorphisme de K s'étend en un automorphisme de L.
- **1.5 Lemme.** Soit $\phi: K \hookrightarrow L$ une extension algébrique. Le nombre $\# \mathrm{Hom}_K(\phi L, \omega \Omega)$ ne dépend pas du choix de la clôture algébrique $\omega: K \hookrightarrow \Omega^1$.

À ce stade, rien ne dit que ce nombre est fini. Mais :

- **1.6 Lemme** (car(K) = 0). Si l'extension L/K est finie, le nombre $\# \operatorname{Hom}_K(L,\Omega)$ est égal à [L:K]. ²
- **1.7 Théorème.** Soit L/K une extension finie. On a l'inégalité $\#\mathrm{Gal}(L/K) \leq \#\mathrm{Hom}_K(L,\Omega)$ et l'égalité a lieu si et seulement si L/K est normale.
- **1.8 Théorème** (car(K) = 0). Pour toute extension finie L/K, on a les inégalités

$$1 \le \#\operatorname{Gal}(L/K) \le [L:K]$$

et la deuxième est une égalité si et seulement si l'extension est normale. ³

2 Groupe de Galois et permutations de racines

Soit $P \in K[X]$ un polynôme, et soit L/K une extension. Notons $\mathcal{Z}(P,L)$ l'ensemble des racines de P (dans L), et $\mathcal{S}_{\mathcal{Z}(P,L)}$ le groupe symétrique des permutations de ces racines. Bien entendu, si on numérote ces racines z_1,\ldots,z_n , cela fournit un isomorphisme à $\mathcal{S}_{\mathcal{Z}(P)} \simeq \mathcal{S}_n$.

Tout élément de $\operatorname{Gal}(L/K)$ envoie $\mathcal{Z}(P)$ dans lui-même. Cela définit donc une action canonique de $\operatorname{Gal}(L/K)$ sur $\mathcal{Z}(P,L)$ ou de manière équivalente une application canonique $\operatorname{Gal}(L/K) \to \mathcal{S}_{\mathcal{Z}(P,L)}$.

- **2.1 Lemme.** Si L est un corps de décomposition de P, cette application est injective.
- 2.2 Remarque. Si car(K) = 0, nous savons que Gal(L/K) est de cardinal [L:K] par le théorème 1.8. Par contre, $S_{\mathcal{Z}(P,L)}$ peut être beaucoup plus gros.

^{1.} Ce nombre $\#\mathrm{Hom}_K(L,\Omega)$ est parfois appelé degré de séparabilité de L/K et noté $[L:K]_s$.

^{2.} Sans hypothèse de caractéristique, c'est encore vrai si et seulement si l'extension est séparable. Sinon, on a seulement une inégalité $\#\operatorname{Hom}_K(L,\Omega) < [L:K]$.

^{3.} Lorsque $car(K) \neq 0$, les inégalités sont vraies, et l'égalité a lieu si et seulement si l'extension est à la fois séparable et normale. Une telle extension est appellée *galoisienne* dans la littérature.

- **2.3 Lemme.** Soit L/K une extension de décomposition de P. Le groupe de Galois agit transitivement sur $\mathcal{Z}(P,L)$ si et seulement si P est une puissance d'un polynôme irréductible (fois un inversible). En particulier, si une racine est de multipicité 1, elles le sont toutes, et P est irréductible.
- **2.4 Lemme.** Soit P un polynôme irréductible dans K[X]. Notons L l'extension K[X]/(P). Alors l'application $Gal(L/K) \to \mathcal{Z}(P,L)$ envoyant σ sur $\sigma(X)$ est une bijection.
- 2.5 Remarque. Attention, cette application n'est pas un morphisme de groupes, puisque $\mathcal{Z}(P,L)$ n'est pas un groupe. Mais cela donne une idée du cardinal de $\operatorname{Gal}(L/K)$. En particulier, cela confirme que si P n'a pas toutes ses racines dans L, alors $\#\operatorname{Gal}(L/K) = \#\mathcal{Z}(P,L) < \operatorname{deg}(P) = [L:K]$ puisqu'elle n'est pas normale.
- 2.6 Remarque. Si L = K[X]/(P) est normale, autrement dit si toutes les racines de P sur L s'expriment en fonction de X, et qu'on a trouvé ces expressions en pratique, alors cela permet de déterminer à la main le groupe de Galois de L/K comme sous groupe de $\mathcal{S}_{\mathcal{Z}(P,L)}$.

3 Correspondance de Galois

Nous allons maintenant aborder le théorème le plus emblématique de la théorie de Galois, qui clarifie le lien entre les extensions finies et les groupes finis.

Si G est un sous-groupe des automorphismes d'un corps L, notons L^G l'ensemble des éléments de L qui sont fixes par tout élément de G. En particulier, si G est un sous-groupe de $\mathrm{Gal}(L/K)$ pour une extension L/K, alors L^G/K est une sous-extension de L/K.

3.1 Lemme. L'ensemble L^G est un sous-corps de L, contenant (l'image de) K dans le cas où G est un sous-groupe de $\mathrm{Gal}(L/K)$.

Dans cette situation, nous pouvons donc considérer la sous-extension L^G/K ou bien l'extension L/L^G .

3.2 Lemme. Si G est fini, alors L/L^G est algébrique et pour tout $x \in L$, le polynôme minimal de x sur L^G est de degré inférieur ou égal à #G.

Remarquons maintenant que G est naturellement un sous-groupe de $Gal(L/L^G)$.

3.3 Théorème (Artin, car(L) = 0). Soit L un corps, et G un sous-groupe fini des automorphismes de L. Alors L^G est un sous-corps de L, l'extension L/L^G est normale de degré $[L:L^G] = \#G$, et $Gal(L/L^G) = G$.

Nous pouvons maintenant énoncer le résultat central.

Nous avons vu qu'à un sous-groupe G de $\operatorname{Gal}(L/K)$, on peut associer un sous-corps L^G de L contenant (l'image de) K. Dans l'autre sens, à toute sous-corps F de L contenant K, on associe le sous-groupe $\operatorname{Gal}(L/F)$ de $\operatorname{Gal}(L/K)$ des éléments laissant tout élément de F fixe.

3.4 Théorème (correspondance de Galois). Soit L/K une extension normale avec $\operatorname{car}(K) = 0.5$ Les applications

$$G \longmapsto L^G$$
 $\{sous\text{-}groupes\ de\ \mathrm{Gal}(L/K)\} \longleftrightarrow \left\{ egin{array}{ll} sous\text{-}corps\ de\ L \\ contenant\ (l'image\ de)\ K \end{array} \right\}$

sont des bijections décroissantes inverses l'une de l'autre (quand on ordonne aussi bien les sous-groupes que les sous-extensions par inclusion).

FIGURE 1 – Réseau des sous-groupes de $Gal(\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q})$

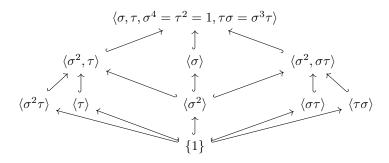
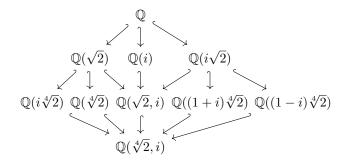


FIGURE 2 – Réseau des sous-extensions de $\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q}$



3.5 Corollaire. Une extension finie en caractéristique 0 n'a qu'un nombre fini de sous-extensions. ⁶

Il est possible de préciser certaines choses dans la correspondance 3.4. Par exemple, on peut se demander s'il est possible d'obtenir des informations sur l'extension L^G/K et son groupe d'automorphismes. La réponse est oui.

- **3.6 Lemme.** Soit G un sous-groupe de $\operatorname{Gal}(L/K)$ et soit $\sigma \in \operatorname{Gal}(L/K)$. Alors $\sigma(L^G) = L^{\sigma G \sigma^{-1}}$ et G est normal dans $\operatorname{Gal}(L/K)$ si et seulement si tout élément de $\operatorname{Gal}(L/K)$ envoie L^G dans lui-même.
- **3.7 Corollaire.** Par la bijection 3.4, les sous-groupes normaux de Gal(L/K) correspondent aux sous-corps F de L tels que l'extension F/K est normale.

Soit $N_{\mathrm{Gal}(L/K)}(G)$ le normalisateur de G dans $\mathrm{Gal}(L/K)$. Tout élément σ dedans vérifie donc $\sigma(L^G) = L^G$ et induit ainsi par restriction un élément de $\mathrm{Gal}(L^G/K)$. De plus, il agit trivialement sur L^G exactement quand il est dans $G = \mathrm{Gal}(L/L^G)$.

3.8 Théorème. La restriction à L^G induit une application surjective

$$\mathrm{N}_{\mathrm{Gal}(L/K)}(G) \twoheadrightarrow \mathrm{Gal}(L^G/K)$$

^{4.} Le théorème est correct sans hypothèse de caractéristique, et l'extension L/L^G est alors automatiquement séparable.

^{5.} Le théorème est valable en toute caractéristique à condition de supposer l'extension séparable.

^{6.} Plus généralement, c'est vrai des extensions séparables. Et encore plus généralement, une extension n'a qu'un nombre fini de sous-extensions si et seulement si elle est monogène.

dont le noyau est $G = Gal(L/L^G)$. En particulier, si G est normal, alors on a une surjection

$$\operatorname{Gal}(L/K) \twoheadrightarrow \operatorname{Gal}(L^G/K)$$

de noyau $Gal(L/L^G)$.

4 Quelques familles d'extensions classiques

Intéressons-nous maintenant à une famille d'extensions fortement liée aux groupes abéliens. Il s'agit des extensions cyclotomiques. Notons μ_n le sous-groupe de \mathbb{C}^* des racines n-ièmes de l'unité. Donc

$$\mu_n = \{1, e^{\frac{2i\pi}{n}}, e^{2\frac{2i\pi}{n}}, e^{3\frac{2i\pi}{n}}, \cdots, e^{(n-1)\frac{2i\pi}{n}}\}.$$

Nous utiliserons également la fonction ϕ d'Euler, définie par

$$\phi(n) = \#\{d \in \mathbb{N}, \text{ tel que } 0 < d < n \text{ et } (d,n) = 1\} = \#(\mathbb{Z}/n\mathbb{Z})^{\times}.$$

- **4.1 Définition.** Une racine $\xi \in \mu_n$ est dite primitive si elle engendre le groupe μ_n , autrement dit, si le sous-groupe de μ_n qu'elle engendre est μ_n tout entier. Dans la liste ci-dessus, les racines primitives n-ièmes sont les $e^{k\frac{2i\pi}{n}}$ avec (k,n)=1. On note μ_n^{prim} le sous-ensemble de μ_n formé des racines primitives de l'unité.
- **4.2 Lemme.** *On a*

$$\mu_n = \bigsqcup_{d|n} \mu_d^{prim}.$$

4.3 Définition. Soit $n \in \mathbb{N} \setminus \{0\}$. Le polynôme

$$\begin{split} \Phi_n(X) = & \prod_{\begin{subarray}{c} \xi \in \mu_n \\ \xi \mbox{ primitive} \end{subarray}} & (X - \xi) = \prod_{\begin{subarray}{c} 1 \le k \le n \\ (k,n) = 1 \end{subarray}} & (X - e^{k\frac{2i\pi}{n}}) \end{split}$$

est appelé n-ième polynôme cyclotomique. Il est donc de degré $\phi(n)$.

4.4 Proposition. Pour tout $n \in \mathbb{N} \setminus \{0\}$, le polynôme Φ_n est unitaire et à coefficients entiers, i.e. $\Phi_n \in \mathbb{Z}[X]$. Il est irréductible dans $\mathbb{Q}[X]$. On a également

$$X^n - 1 = \prod_{d|n} \Phi_d(X) \tag{4.1}$$

ce qui en donne donc une décomposition en facteurs irréductibles dans $\mathbb{Q}[X]$. De plus, si p est un nombre premier, on a

$$\Phi_p(X) = 1 + X + \dots + X^{p-1}. (4.2)$$

Voici les premiers polynômes cyclotomiques. On les calcule par récurrence en utilisant (4.1).

$$\begin{split} &\Phi_1(X) = X - 1 \\ &\Phi_2(X) = X + 1 \\ &\Phi_3(X) = X^2 + X + 1 \\ &\Phi_4(X) = X^2 + 1 \\ &\Phi_5(X) = X^4 + X^3 + X^2 + X + 1 \\ &\Phi_6(X) = X^2 - X + 1 \\ &\Phi_7(X) = X^6 + X^5 + X^4 + X^3 + X^2 + X + 1 \\ &\Phi_8(X) = X^4 + 1 \\ &\Phi_9(X) = X^6 + X^3 + 1 \\ &\Phi_{10}(X) = X^4 - X^3 + X^2 - X + 1 \\ &\Phi_{11}(X) = X^{10} + X^9 + X^8 + X^7 + X^6 + X^5 + X^4 + X^3 + X^2 + X + 1 \\ &\Phi_{12}(X) = X^4 - X^2 + 1 \end{split}$$

- **4.5 Lemme.** Soient $\xi, \zeta \in \mu_n^{prim}$. Alors $\mathbb{Q}[\xi]$ et $\mathbb{Q}[\zeta]$ sont le même sous-corps $\mathbb{Q}[\mu_n]$ de \mathbb{C} , par ailleurs isomorphe à $\mathbb{Q}[X]/(\Phi_n)$.
- **4.6 Définition.** Soit $n \in \mathbb{N} \subseteq \{0\}$. On appelle *n-ième corps cyclotomique* le sous-corps $\mathbb{Q}[\mu_n]$ de \mathbb{C} (donc égal à $\mathbb{Q}[\xi]$ pour n'importe quel $\xi \in \mu_n^{\text{prim}}$).

Soit ξ une racine primitive n-ième de l'unité. Pour tout $\sigma \in \operatorname{Gal}(\mathbb{Q}[\mu_n]/\mathbb{Q})$, l'élément $\sigma(\xi) \in \mu_n^{\operatorname{prim}}$ et est donc de la forme ξ^k avec (k,n)=1, et k bien défini à un multiple de n près, autrement dit avec k inversible dans $\mathbb{Z}/n\mathbb{Z}$.

4.7 Théorème. L'application qui envoie σ sur la classe de k dans $\mathbb{Z}/n\mathbb{Z}$ telle que $\sigma(\xi)=\xi^k$ définit un isomorphisme de groupes

$$\operatorname{Gal}(\mathbb{Q}[\mu_n]/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^*.$$

canonique (indépendant du choix de $\xi \in \mu_n$). Le groupe $Gal(\mathbb{Q}[\xi]/\mathbb{Q})$ est donc abélien et d'ordre $\phi(n)$ (fonction d'Euler).

Passons maintenant aux extensions radicales plus générales, c'est-à-dire celles où l'on rajoute des racines n-ièmes d'éléments a. Une des idées maîtresses de Galois est d'avoir fait le lien entre ce type d'extensions et la cyclicité des groupes de Galois.

4.8 Définition. Une extension finie L/K est dite *radicale élémentaire* s'il existe un élément $x \in L$ tel que L = K[x] et $x^n \in K$ pour un certain $n \in \mathbb{N}$.

Elle est dite *radicale* (tout court) si elle peut s'obtenir comme une composition finie d'extension radicales élémentaires.

4.9 Remarque. En général, une telle extension n'est pas normale, comme on peut le voir pour $\mathbb{Q}(\sqrt[3]{2})$. Mais elle le devient si on suppose que K contient toutes les racines de l'unité, i.e. celles de X^n-1 que nous avons étudié précédemment.

Nous ferons donc cette hypothèse par la suite. Par ailleurs, nous nous restreignons à la caractéristique 0 car cela suffit à exposer les idées principales, mais le même type de résultat existe en caractéristique p>0 et n'est pas plus compliqué.

Soit K un corps de car nulle et tel que $\#\mu_n(K) = n$ et soit $a \in K^*$. Soit L/K une extension de décomposition de $X^n - a$, et soit α une racine dans L.

4.10 Théorème. L'extension L/K est normale et l'application qui envoie σ sur $\sigma(\alpha)/\alpha$ définit un isomorphisme de groupes

$$\operatorname{Gal}(L/K) \to \mu_d$$

où d est le plus petit entier non nul tel que $\alpha^d \in K$. Cet isomorphisme est canonique (indépendant du choix de α).

4.11 Corollaire. Avec les notations du théorème, le polynôme X^n-a est irréductible sur K si et seulement si d=n, si et seulement si $\mathrm{Gal}(L/K)\simeq \mu_n\simeq \mathbb{Z}/n\mathbb{Z}$.

Plus surprenant, il y a une réciproque.

4.12 Théorème. Soit K un corps de caractéristique nulle et tel que $\#(\mu_n(K)) = n$, et soit L/K une extension normale finie telle que $\operatorname{Gal}(L/K) \simeq \mathbb{Z}/n\mathbb{Z}$. Alors, il existe $a \in K$ tel que L soit une extension de décomposition de $X^n - a$.