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ABSTRACT. We establish a fibre sequence relating the classical Grothendieck-Witt theory of a ring 𝑅 to the
homotopy C2-orbits of its K-theory and Ranicki’s original (non-periodic) symmetric L-theory. We use this fibre
sequence to remove the assumption that 2 is a unit in 𝑅 from various results about Grothendieck-Witt groups.
For instance, we solve the homotopy limit problem for Dedekind rings whose fraction field is a number field,
calculate the various flavours of Grothendieck-Witt groups ofℤ, show that the Grothendieck-Witt groups of rings
of integers in number fields are finitely generated, and that the comparison map from quadratic to symmetric
Grothendieck-Witt theory of coherent rings of global dimension 𝑑 is an equivalence in degrees ≥ 𝑑 + 3. As an
important tool, we establish the hermitian analogue of Quillen’s localisation-dévissage sequence for Dedekind
rings and use it to solve a conjecture of Berrick-Karoubi.
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INTRODUCTION

This paper investigates the hermitian K-theory spectra of non-degenerate symmetric and quadratic forms
over a ring 𝑅 and their homotopy groups: the higher Grothendieck-Witt groups of 𝑅. Many structural
and computational features of the higher Grothendieck-Witt groups of rings 𝑅 in which 2 is a unit are
well understood, prevalently due to extensive work of Karoubi [Kar71dKar71d, Kar71bKar71b, Kar71cKar71c, Kar71aKar71a, Kar80Kar80]
and Schlichting [Sch10aSch10a, Sch10bSch10b, Sch17Sch17, Sch19aSch19a]. Previously, in Paper [IIII] we have used the categorical
framework of Poincaré ∞-categories to establish some fundamental properties of the higher Grothendieck-
Witt groups of rings in which 2 is not necessarily a unit, most notably a form of Karoubi periodicity [IIII].4.3.44.3.4
and the existence of a fibre sequence relating the Grothendieck-Witt theory of any Poincaré∞-category with
its algebraicK-theory and L-theory. This allows for the separation ofK-theoretic andL-theoretic arguments,
and the theme of this paper is to deduce results about Grothendieck-Witt theory from their counterparts in
L-theory.

Date: June 2, 2022.
1



2 CALMÈS, DOTTO, HARPAZ, HEBESTREIT, LAND, MOI, NARDIN, NIKOLAUS, AND STEIMLE

Main results. Let 𝑅 be a unital and associative, but not necessarily commutative ring. Let D be a duality
on the category Proj(𝑅) of finitely generated projective left 𝑅-modules. Then D is necessarily of the form
D𝑃 = hom𝑅(𝑃 ,𝑀), where 𝑀 ∶= D𝑅 is an invertible ℤ-module with involution (see Definition R.1R.1). An
𝑀-valued unimodular symmetric form on 𝑃 is then a self-dual isomorphism 𝜑∶ 𝑃 → D𝑃 . Together with
their isomorphisms, these form a groupoid Unimod(𝑅;𝑀), symmetric monoidal under orthogonal direct
sum. The classical symmetric Grothendieck-Witt theory of 𝑅 is its group-completion:

GWs
cl(𝑅;𝑀) = (Unimod(𝑅;𝑀), ⊕)𝑔𝑝.

By construction, GWs
cl(𝑅;𝑀) is a group-like E∞-space, which we view equivalently as a connective spec-

trum. Its homotopy groups are the higher symmetric Grothendieck-Witt groups GWs
cl,∗(𝑅;𝑀) of 𝑅. Sim-

ilarly, one can consider GWq
cl(𝑅;𝑀), the variant of GWs

cl(𝑅;𝑀) where 𝑀-valued symmetric bilinear
forms are replaced by 𝑀-valued quadratic forms, whose higher homotopy groups are the higher quadratic
Grothendieck-Witt groups.

After inverting 2, it turns out that GWq
cl(𝑅;𝑀)[ 12 ] ≃ GWs

cl(𝑅;𝑀)[ 12 ], and the study of the higher
Grothendieck-Witt groups of𝑅 reduces to the study of the K-groups and Witt-groups, as by work of Karoubi
there is a natural splitting

GWs
cl,∗(𝑅;𝑀)[ 12 ] ≅ (K∗(𝑅;𝑀)[ 12 ])

C2 ⊕ (W∗(𝑅;𝑀)[ 12 ]),

see also [BF85BF85]. Here K(𝑅;𝑀) is the K-theory spectrum of 𝑅 with C2-action induced by sending 𝑃 to its
dual D𝑃 , and the first summand is the subgroup of invariants of its homotopy groups with 2 inverted. The
second summand consists of the Witt groups of symmetric forms and formations, which are 4-periodic by
definition. The first main result of the present paper combines the general fibre sequence of Paper [IIII] with
Ranicki’s algebraic surgery to obtain an integral version of this result.

Theorem 1. For every ring𝑅 and duality D = hom𝑅(−,𝑀) on Proj(𝑅), there is a fibre sequence of spectra

K(𝑅;𝑀)hC2

hyp
⟶ GWs

cl(𝑅;𝑀) ⟶ Lshort(𝑅;𝑀)

where Lshort(𝑅;𝑀) is a canonical connective spectrum whose homotopy groups are Ranicki’s original
(non-4-periodic) symmetric L-groups from [Ran80Ran80].

After inverting 2, this fibre sequence recovers Karoubi’s splitting of GWs
cl(𝑅;𝑀), but it also allows to

efficiently treat the behaviour of Grothendieck-Witt theory at the prime 2, as we will explain below. Without
inverting 2 on the outside, but when 2 is a unit in𝑅, Ranicki’s L-groups Lshort

∗ (𝑅;𝑀) are still 4-periodic and
isomorphic to the Witt groups W∗(𝑅;𝑀), and in this case the sequence of Theorem 11 is due to Schlichting
[Sch17Sch17, §7]. However, if 2 is not invertible in 𝑅, there are several variants of L-spectra in addition to
Lshort(𝑅;𝑀), most notably the 4-periodic symmetric L-theory Ls(𝑅;𝑀) used by Ranicki in later work
[Ran92Ran92]. Our insight is that it is the non-periodic classical symmetric L-theory of Ranicki [Ran80Ran80] which
makes Theorem 11 true for all rings.

Coming back to the 2-local behaviour of Grothendieck-Witt theory, we note that sending a symmetric bi-
linear form to its underlying finitely generated projective module leads to a canonical map GWs

cl(𝑅;𝑀) →
K(𝑅;𝑀)hC2 . The question whether this map is a 2-adic equivalence in positive degrees is known as Thoma-
son’s homotopy limit problem [Tho83Tho83], which admits a positive solution for many rings in which 2 is in-
vertible, notably by work of Hu, Kriz and Ormsby [HKO11HKO11], Bachmann and Hopkins [BH20BH20], and Berrick,
Karoubi, Schlichting and Østvær [BKSØ15BKSØ15]. In §3.13.1 we will show:

Theorem 2. Let 𝑅 be a Dedekind ring whose fraction field is a number field. Then the canonical map
GWs

cl(𝑅;𝑀) → K(𝑅;𝑀)hC2 is a 2-adic equivalence in non-negative degrees.

To the best of our knowledge this is the first general result on the homotopy limit problem for a class
of rings which are not fields and in which 2 is not assumed to be a unit. The strategy we adopt to prove
Theorem 22 is to use Theorem 11 to reduce it to the case of 𝑅[ 12 ], where it holds by [BKSØ15BKSØ15]. For a general
ring𝑅, we further observe that the failure of 4-periodicity of Lshort(𝑅;𝑀) in high degrees provides a purely
L-theoretic obstruction for the homotopy limit problem map GWs

cl(𝑅;𝑀) → K(𝑅;𝑀)hC2 to be a 2-adic
equivalence in positive degrees; see Proposition 3.1.133.1.13.
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The polarisation of a quadratic form induces a comparison map GWq
cl(𝑅;𝑀) → GWs

cl(𝑅;𝑀), and in
§1.31.3 we show that for coherent rings of finite global dimension, this map is an equivalence in high degrees:

Theorem 3. Suppose 𝑅 is a coherent ring of finite global dimension 𝑑. Then the map GWq
cl,𝑛(𝑅;𝑀) →

GWs
cl,𝑛(𝑅;𝑀) is injective for 𝑛 ≥ 𝑑 +2 and an isomorphism for 𝑛 ≥ 𝑑 +3. Moreover, if 𝑅 is 2-torsion free

and 𝑀 = 𝑅, the map is injective for 𝑛 ≥ 𝑑 and an isomorphism for 𝑛 ≥ 𝑑 + 1.

Here, by slight abuse of terminology, by a coherent ring we mean a left-coherent ring, and likewise finite
global dimension refers to left-global dimension. The same result is, however, true for right-coherent rings
of finite right-global dimension, see Remark 1.3.121.3.12. In addition, similar statements hold for Grothendieck-
Witt groups associated to any form parameter in the sense of Bak in place of quadratic forms in the above
theorem, see Remark 1.3.171.3.17 for details.

Theorem 11 does not only provide a conceptual description of symmetric Grothendieck-Witt spectra, but
it can also be used for explicit calculations. For instance, when 𝑅 = ℤ there are two dualities on Proj(ℤ),
leading to the symmetric and symplectic Grothendieck-Witt groups of ℤ, respectively. In §3.23.2 we explicitly
calculate these groups in a range of degrees < 20000, and beyond that conditionally on the Kummer-
Vandiver conjecture in the following sense: Of some Grothendieck–Witt groups, we can only determine the
order, and the Kummer-Vandiver conjecture implies that these groups are cyclic.

Theorem 4. The symmetric and symplectic Grothendieck-Witt groups of ℤ are given in the table of Theo-
rem 3.2.13.2.1.

Finally, using in addition Theorem 33 and explicit low dimensional calculations, we also obtain the qua-
dratic and skew-quadratic Grothendieck-Witt groups of ℤ in Theorems 3.2.93.2.9 and 3.2.133.2.13.

Proof strategy and further results. We approach GWs
cl by investigating Grothendieck-Witt theory in the

general context of Poincaré ∞-categories, as defined by Lurie [Lur11Lur11] and further developed in Paper [II],
Paper [IIII]. We briefly recall that a Poincaré ∞-category consists of a small stable ∞-category C equipped
with a Poincaré structure, that is a functor Ϙ∶ Cop → S𝑝 which is quadratic and satisfies a non-degeneracy
condition, which allows to extract an induced duality D∶ Cop → C. We refer to Paper [II] for a general
introduction to Poincaré ∞-categories, and to Paper [IIII] for the construction of their Grothendieck-Witt and
L-spectra and their universal properties. In [IIII].4.4.144.4.14, we showed that for any Poincaré ∞-category (C, Ϙ)
there is a natural fibre sequence
(1) K(C, Ϙ)hC2

⟶ GW(C, Ϙ) ⟶ L(C, Ϙ).

where K(C, Ϙ) is the K-theory spectrum of C with the C2-action induced by D. To connect this general fibre
sequence to Theorem 11, we will be concerned with studying appropriate Poincaré structures on the derived
∞-category of perfect complexes Dp(𝑅). Some immediate examples of Poincaré structures on Dp(𝑅) are
the quadratic and symmetric Poincaré structures given at a perfect complex 𝑋 by the formulae
(2) Ϙ

q
𝑀 (𝑋) = hom𝑅⊗𝑅(𝑋 ⊗𝑋,𝑀)hC2

and Ϙ
s
𝑀 (𝑋) = hom𝑅⊗𝑅(𝑋 ⊗𝑋,𝑀)hC2 ,

where 𝑀 is an invertible ℤ-module with involution over 𝑅 (see Definition R.1R.1), and the C2-action is given
by conjugating the flip action on 𝑋 ⊗ 𝑋 and the C2-action on 𝑀 . These two Poincaré structures are the
homotopy theoretic analogues of quadratic and symmetric forms in algebra, which on a finitely generated
projective 𝑅-module 𝑃 are respectively the groups of coinvariants and invariants
(3) Hom𝑅⊗𝑅(𝑃 ⊗ 𝑃 ,𝑀)C2

and Hom𝑅⊗𝑅(𝑃 ⊗ 𝑃 ,𝑀)C2

for the same C2-action as above. One insight in our series of papers is that the abstract framework of Paper
[II], Paper [IIII] allows us to work with Poincaré structures on Dp(𝑅) which are more intimately related to
algebra than the naive homotopy theoretic constructions of (22). These are the non-abelian derived functors
of the algebraic constructions of (33), which we call the genuine quadratic and genuine symmetric Poincaré
structures and that we denote respectively by Ϙgq𝑀 and Ϙgs𝑀 . There are canonical comparison maps

Ϙ
q
𝑀 ⟶ Ϙ

gq
𝑀 ⟶ Ϙ

gs
𝑀 ⟶ Ϙ

s
𝑀

relating these Poincaré structures. When 2 is a unit in 𝑅, all of them are equivalences, and we showed in
§[IIII].BB that the corresponding Grothendieck-Witt spectra coincide with previous constructions of Grothendieck-
Witt spectra due to Schlichting and Spitzweck [Sch17Sch17, Spi16Spi16]. In general, when 2 is not necessarily a
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unit, the fourth and ninth authors [HS21HS21] relate the genuine Grothendieck-Witt spectra GWgs(𝑅;𝑀) ∶=
GW(Dp(𝑅); Ϙgs𝑀 ) and GWgq(𝑅;𝑀) ∶= GW(Dp(𝑅); Ϙgq𝑀 ) to the classical ones, by providing natural equiv-
alences

GWs
cl(𝑅;𝑀)

≃
⟶ 𝜏≥0 GW

gs(𝑅;𝑀) and GWq
cl(𝑅;𝑀)

≃
⟶ 𝜏≥0 GW

gq(𝑅;𝑀),

where GWq
cl(𝑅;𝑀) denotes, similary to GWs

cl(𝑅;𝑀), the group completion of the category of unimodular
quadratic forms, and 𝜏≥0 denotes the connective cover. Writing similarly Lgs(𝑅;𝑀) for L(Dp(𝑅); Ϙgs𝑀 ),
we therefore obtain a fibre sequence K(𝑅;𝑀)hC2

→ GWgs(𝑅;𝑀) → Lgs(𝑅;𝑀), and Theorem 11 is then
implied by the following result, see Theorem 1.2.221.2.22.

Theorem 5. For any ring 𝑅 and non-negative integer 𝑛, the genuine symmetric L-groups Lgs
𝑛 (𝑅;𝑀) are

canonically isomorphic to Ranicki’s original symmetric L-groups from [Ran80Ran80]. Thus, in the notation of
Theorem 11, we have Lshort(𝑅;𝑀) = 𝜏≥0 Lgs(𝑅;𝑀).

We recall that the original symmetric L-groups of Ranicki are defined so that elements of the 𝑛’th L-group
are represented by Poincaré chain complexes of length at most 𝑛, for 𝑛 ≥ 0. Ranicki then defines negative
symmetric L-groups in an ad hoc manner, and we show that these negative L-groups are also canonically
isomorphic to the corresponding negative genuine symmetric L-groups: Concretely they are given by

Lgs
𝑛 (𝑅;𝑀) =

{

Lev
𝑛+2(𝑅; −𝑀) if 𝑛 = −2,−1

Lq
𝑛(𝑅;𝑀) if 𝑛 ≤ −3,

where Lev
∗ and Lq

∗ are respectively the even and quadratic L-groups of [Ran80Ran80]. In particular, Theorem 55 and
the described addendum show that the classical symmetric L-groups can be realised as the homotopy groups
of the non-connective spectrum Lgs(𝑅;𝑀). The general form of Karoubi periodicity of Paper [IIII], which
we review in Theorem R.8R.8 below, relates the Poincaré structures Ϙgs𝑀 and Ϙgq𝑀 and their GW and L-spectra,
in particular showing that Σ4 Lgs(𝑅;𝑀) ≃ Lgq(𝑅;𝑀); see Corollary R.10R.10. From the fibre sequence for
general Poincaré ∞-categories, we therefore also obtain a quadratic version of Theorem 11, given by the
fibre sequence

K(𝑅;𝑀)hC2

hyp
⟶ GWq

cl(𝑅;𝑀) ⟶ 𝜏≥0(Σ4 Lgs(𝑅;𝑀)).

We prove Theorem 55 in § 1.21.2 using Ranicki’s procedure of algebraic surgery, which allows us to com-
pare the L-groups of various Poincaré structures in a range of degrees. We discuss this technique also for
connective ring spectra in Corollary 1.2.331.2.33, and in § 1.31.3, to obtain the following comparison result. We will
write GWs(𝑅;𝑀) ∶= GWs(Dp(𝑅); Ϙs𝑀 ) for the homotopy symmetric Grothendieck-Witt theory, and write
likewise Ls(𝑅;𝑀) ∶= L(Dp(𝑅); Ϙs𝑀 ) for periodic symmetric L-theory.

Theorem 6. Suppose 𝑅 is a coherent ring of finite global dimension 𝑑. Then:
i) the map Lgs

𝑛 (𝑅;𝑀) → Ls
𝑛(𝑅;𝑀) is injective for 𝑛 ≥ 𝑑 − 2 and an isomorphism for 𝑛 ≥ 𝑑 − 1,

ii) the map Lgq
𝑛 (𝑅;𝑀) → Lgs

𝑛 (𝑅;𝑀) is injective for 𝑛 ≥ 𝑑 + 2 and an isomorphism for 𝑛 ≥ 𝑑 + 3.

Part i)i) of Theorem 66, together with Theorem 55, improve a similar comparison result of Ranicki [Ran80Ran80,
Proposition 4.5], where he proves injectivity for non-negative 𝑛 ≥ 2𝑑 − 3 and bijectivity for non-negative
𝑛 ≥ 2𝑑 − 2 for Noetherian rings of finite global dimension 𝑑. Combining Theorem 11 and Theorem 66, we
obtain Theorem 33 from above, see also Corollary 1.3.101.3.10 and Remark 1.3.161.3.16.

Furthermore, part i)i) of Theorem 66 implies that the map GWs
cl(𝑅;𝑀) → 𝜏≥0 GW

s(𝑅;𝑀) is an equiva-
lence if𝑅 is a Dedekind domain. Thus in order to study the classical Grothendieck-Witt groups of Dedekind
rings, it suffices to study the homotopy symmetric Grothendieck-Witt theory GWs. This is an interesting
invariant in its own right which enjoys pleasant properties not shared with the genuine variant GWgs. Most
notably, we prove in Theorem 2.2.42.2.4 that 4-periodic symmetric L-theory Ls, and hence also GWs, satisfies
a dévissage theorem. In particular, we obtain the hermitian analogue of Quillen’s famous localisation-
dévissage fibre sequence [Qui73bQui73b], see Corollary 2.2.52.2.5:

Theorem 7. Let 𝑅 be a Dedekind ring, 𝑇 ⊂ 𝑅 a multiplicative subset, and 𝔽𝔭 the residue field 𝑅∕𝔭 at a
maximal ideal 𝔭 ⊆ 𝑅. Then restriction, localisation, and a choice of uniformiser for every 𝔭 with 𝔭∩𝑇 ≠ ∅
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induce a fibre sequence of spectra
⨁

𝔭∩𝑇≠∅
GWs(𝔽𝔭; (𝑀∕𝔭)[−1]) ⟶ GWs(𝑅;𝑀) ⟶ GWs(𝑅[𝑇 −1];𝑅[𝑇 −1]⊗𝑅𝑀),

where 𝑅[𝑇 −1] is obtained from 𝑅 by inverting the elements of 𝑇 .

We in fact construct a more general fibre sequence for localisations of 𝑅 away from a set of non-empty
prime ideals of 𝑅 in a formulation that does not depend on choices of uniformisers, see Corollary 2.2.52.2.5.
This result establishes a conjecture of Berrick and Karoubi which asserts that the map ℤ → ℤ[ 12 ] induces
an equivalence on the positive, 2-localised Grothendieck-Witt groups [BK05BK05]. In fact, this result holds for
general rings of integers in number fields as we observe in Proposition 3.1.113.1.11. In § 33 we then combine
Theorem 77 with work of Berrick, Karoubi, Schlichting and Østvær [BKSØ15BKSØ15] to deduce Theorem 22, as
well as the calculations for the integers of Theorem 44.

Finally, we also use Theorem 11, together with a calculation of the symmetric and quadratic L-groups
of Dedekind rings to deduce the following finiteness result; see Corollary 2.3.192.3.19. When 𝑀 = 𝑅 with the
involution given by multiplication by 𝜖 = ±1, we write GWs

cl,𝑛(𝑅; 𝜖) for GWs
cl,𝑛(𝑅;𝑀), and similarly for

GWq
cl,𝑛(𝑅; 𝜖).

Corollary 8. Let O be a number ring, that is, a localisation of the ring of integers in a number field away
from finitely many primes, and 𝜖 = ±1. Then its classical 𝜖-symmetric and 𝜖-quadratic Grothendieck-Witt
groups GWs

cl,𝑛(O; 𝜖) and GWq
cl,𝑛(O; 𝜖) are finitely generated.

In the quadratic case, one can prove this result also through homological stability, but in the general-
ity presented here the argument is not known to carry over to the symmetric case, as we explain in Re-
mark 2.3.202.3.20.

Remark. Some of the results presented above have also been announced in [Sch19bSch19b]: The calculations of
the Grothendieck-Witt groups of the integers of Theorem 44 in the symmetric, symplectic and quadratic
cases (although the results are not quite correct away from the prime 2, see Remark 3.2.53.2.5), the localisation-
dévissage sequence of Theorem 77 in non-negative degrees, and Theorem 33 for the ring 𝑅 = ℤ with the
trivial involution.

Notation and Conventions. When not stated explicitly otherwise, the symbol⊗ denotes the derived tensor
product over ℤ. We always denote by D = hom𝑅(−,𝑀) the dualities on Proj(𝑅) and Dp(𝑅) determined by
an invertible ℤ-module with involution 𝑀 .
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RECOLLECTION

In this section we recall some of the material from Paper [II] and Paper [IIII] on Poincaré structures on the
perfect derived∞-category of a ring and their Grothendieck-Witt and L spectra, as we rely on this framework
in the rest of the paper. We will also review the general form of Karoubi’s periodicity Theorem [IIII].4.3.44.3.4,
which does not require that 2 is a unit in the base ring.

In Paper [IIII], we view Grothendieck-Witt theory as an invariant of what we call a Poincaré ∞-category.
A Poincaré ∞-category is a pair (C, Ϙ) consisting of a small stable ∞-category C equipped with a Poincaré
structure Ϙ, that is a functor Ϙ∶ Cop → S𝑝which is reduced and 2-excisive in the sense of Goodwillie’s func-
tor calculus, and whose symmetric cross-effect B∶ Cop×Cop → S𝑝 is of the form B(𝑋, 𝑌 ) = homC(𝑋,D𝑌 )
for some equivalence of categories D∶ Cop→C. Poincaré ∞-categories were introduced by Lurie as a novel
framework for Ranicki’s L-theory (see [Lur11Lur11] and Paper [IIII]). A Poincaré structure provides a formal no-
tion of “hermitian form” on the objects of C. Indeed, there is as a space of Poincaré objects Pn(C, Ϙ) which
consists of pairs (𝑋, 𝑞) where 𝑋 is an object of C and 𝑞 ∈ Ω∞

Ϙ(𝑋) is such that a certain canonical map
𝑋 → D𝑋 is an equivalence (see Definition [II].2.1.32.1.3). There are then canonical transformations

Pn(C, Ϙ) → Ω∞ GW(C, Ϙ) and Pn(C, Ϙ) → Ω∞ L(C, Ϙ)

which exhibit the Grothendieck-Witt and L-theory functors as the universal approximation of Pn by a Verdier
localising, respectively a bordism invariant, functor (see Observation [IIII].4.1.24.1.2 and Theorem [IIII].4.4.124.4.12).
These universal properties are similar to the universal property of the map from the groupoid core to K-
theory CrC → K(C) of a small stable ∞-category provided by [BGT13BGT13].

In the present paper we will be concerned with the perfect derived ∞-category Dp(𝑅) of a ring 𝑅,
which is the ∞-categorical localisation of the category of bounded chain complexes of finitely generated
projective (left) 𝑅-modules at the quasi-isomorphisms, or equivalently the ∞-category of compact objects
of the localisation D(𝑅) of all chain complexes at the quasi-isomorphisms. Given a Poincaré structure
Ϙ∶ Dp(𝑅)op → S𝑝, we will denote the corresponding Grothendieck-Witt spectrum by

GW(𝑅; Ϙ) ∶= GW(Dp(𝑅), Ϙ).

We are going to consider a specific collection of Poincaré structures on Dp(𝑅) associated to modules with
involution, which we now introduce. For what follows, let⊗U denote the underived tensor product of rings
over ℤ. Given an𝑅⊗U𝑅-module𝑀 , we let𝑀op denote the𝑅⊗U𝑅-module defined by𝑀 with the module
action 𝑟 ⊗ 𝑠 ⋅ 𝑚 ∶= 𝑠 ⊗ 𝑟 ⋅ 𝑚 for all 𝑟, 𝑠 in 𝑅 and 𝑚 in 𝑀 .

R.1. Definition. A ℤ-module with involution over 𝑅 is an 𝑅 ⊗U 𝑅-module 𝑀 together with an 𝑅⊗U𝑅-
module map ∙∶ 𝑀𝑜𝑝 →𝑀 such that ̄̄𝑚 = 𝑚. We say that𝑀 is invertible if it is finitely generated projective
for either of its 𝑅-module structures, and the map

𝑅⟶ Hom𝑅(𝑀,𝑀)



HERMITIAN K-THEORY FOR STABLE ∞-CATEGORIES III: GROTHENDIECK-WITT GROUPS OF RINGS 7

which sends 1 to ∙ is an isomorphism, where 𝑀 is regarded as an 𝑅-module via the first 𝑅-factor in the
source, and the second one in the target.

The notion of (invertible) ℤ-modules with involution over 𝑅 is discussed in §[II].4.24.2 and appears in
Definitions [II].4.2.24.2.2 and [II].4.2.44.2.4. In Definition [II].3.1.13.1.1, we have also defined a notion of invertible Hℤ-
modules with involution over 𝑅 which is slightly more general: In the terminology of loc. cit. we would
view𝑅 as an E1-algebra over the E∞-ring Hℤ, or equivalently as a dg-algebra over ℤ, and form the derived
tensor product 𝑅 ⊗ 𝑅. We write D(𝑅 ⊗ 𝑅) for its derived ∞-category, obtained as in the discrete case
by localising the category of 𝑅 ⊗ 𝑅-dg-modules at the quasi-isomorphisms. An invertible Hℤ-module
with involution over 𝑅 is then an 𝑅⊗𝑅-module in Hℤ-modules with C2-action, which is perfect in either
of its two 𝑅-module structures, and such that the canonical map 𝑅 → homD(𝑅)(𝑀,𝑀) is an equivalence.
Restricting along the canonical ring map𝑅⊗𝑅→ 𝑅⊗U𝑅 from the derived to the underived tensor product,
an invertible ℤ-module with involution in the sense of gives rise to an invertible Hℤ-module with involution
over𝑅. In fact, invertibleℤ-modules with involution over𝑅 are precisely those invertibleHℤ-modules with
involution which are finitely generated projective, rather than merely perfect, in either 𝑅-module structure.
This is because the restriction functor D(𝑅⊗U𝑅) → D(𝑅 ⊗ 𝑅) is fully faithful on discrete objects and
homD(𝑅)(𝑀,𝑀) is equivalent to Hom𝑅(𝑀,𝑀) if 𝑀 is projective. We work with the stronger notion of
invertible ℤ-modules with involution of because for many of our arguments we need the associated duality
on Dp(𝑅) to preserve finitely generated projective modules, and this is the case if and only if 𝑀 itself is
finitely generated projective.

R.2. Example.

i) When𝑅 is commutative, any line bundle𝐿 over𝑅 gives rise to an invertible ℤ-module with involution
over 𝑅, with 𝑀 = 𝐿 and ∙ = id.

ii) Let 𝜖 ∈ 𝑅 be a unit. We recall that an 𝜖-involution on 𝑅 consists of a ring isomorphism ∙∶ 𝑅 → 𝑅op

such that ̄̄𝑟 = 𝜖𝑟𝜖−1 and 𝜖 = 𝜖−1. In this case 𝑀 = 𝑅 equipped with the 𝑅 ⊗U 𝑅-module structure
𝑟⊗𝑠 ⋅𝑥 = 𝑟𝑥𝑠 and the involution 𝜖(∙) is an invertible ℤ-module with involution over𝑅, that we denote
by 𝑅(𝜖). This is the structure commonly used by Ranicki as input for L-theory [Ran80Ran80].

iii) Given a ℤ-module with involution 𝑀 over 𝑅, we can define a new ℤ-module with involution over
𝑅 denoted −𝑀 , with the same underlying 𝑅 ⊗U 𝑅-module 𝑀 but with involution −(∙). In the case
where 𝑀 = 𝑅 we have by definition that −𝑅 = 𝑅(−1).

iv) If 𝑀 is an invertible ℤ-module with involution over 𝑅, then 𝑀∨ = hom𝑅(𝑀,𝑅) is canonically an
invertible ℤ-module with involution over 𝑅op, see also Remark R.11R.11.

For every pair of objects 𝑋 and 𝑌 of Dp(𝑅), viewing 𝑀 as an 𝑅 ⊗ 𝑅-module as explained above, we
may form the mapping spectrum

B(𝑋, 𝑌 ) ∶= hom𝑅⊗𝑅(𝑋 ⊗ 𝑌 ,𝑀)

in the derived ∞-category D(𝑅⊗𝑅), where the tensor product 𝑋 ⊗ 𝑌 is also to be understood as derived
overℤ. ThenB is a symmetric bilinear functor, so the spectrumB(𝑋,𝑋) inherits aC2-action by conjugating
the flip action on 𝑋 ⊗𝑋 and the involution of 𝑀 ; see §[II].3.13.1.

Given a spectrum withC2-action𝑋 ∶ 𝐵C2 → S𝑝, we denote by𝑋hC2 and𝑋hC2
its homotopy fixed points

and homotopy orbits, respectively. Similarly, we let𝑋tC2 denote its Tate construction, defined as the cofibre
of the norm map 𝑁 ∶ 𝑋hC2

→ 𝑋hC2 as defined in [Lur17Lur17, §6.1.6], see also [NS18NS18, I.1.11]. We consider
the Tate construction H𝑀 tC2 of the Eilenberg-MacLane spectrum associated to𝑀 as an object of D(𝑅), as
follows. The spectrum H𝑀 tC2 is equipped with an action of [H(𝑅⊗ 𝑅)]tC2 ≃ [H𝑅⊗Hℤ H𝑅]tC2 , that we
restrict to an action of H𝑅 via the Hℤ-linear Tate diagonal H𝑅 → [H𝑅⊗Hℤ H𝑅]tC2 (see §[II].3.23.2). As an
H𝑅-module spectrum, H𝑀 tC2 determines a unique object in D(𝑅), which we denote by the same symbol,
via the canonical equivalence D(𝑅) ≃ Mod𝑅. As in §[II].4.24.2 we then make the following definition:
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R.3. Definition. Let 𝑀 be an invertible ℤ-module with involution over 𝑅. For every 𝑚 ∈ ℤ ∪ {±∞}, we
define a functor Ϙ≥𝑚𝑀 ∶ Dp(𝑅)op → S𝑝 as the pullback

Ϙ
≥𝑚
𝑀 (𝑋) hom𝑅(𝑋, 𝜏≥𝑚H𝑀 tC2 )

hom𝑅⊗𝑅(𝑋 ⊗𝑋,𝑀)hC2 hom𝑅(𝑋,H𝑀 tC2 ).

Here, the right hand vertical map is induced by the 𝑚-connective cover 𝜏≥𝑚H𝑀 tC2 → H𝑀 tC2 , and the
bottom horizontal map is induced by the equivalence

hom𝑅⊗𝑅(𝑋 ⊗𝑋,𝑀)tC2 ≃ hom𝑅(𝑋,H𝑀 tC2 ),

of Lemma [II].3.2.53.2.5. In the special cases where 𝑚 = ±∞ we will denote these functors by
Ϙ
q
𝑀 ∶= Ϙ≥∞𝑀 = hom𝑅⊗𝑅(𝑋 ⊗𝑋,𝑀)hC2

and Ϙ
s
𝑀 ∶= Ϙ≥−∞𝑀 = hom𝑅⊗𝑅(𝑋 ⊗𝑋,𝑀)hC2 .

The functors Ϙ≥𝑚𝑀 are indeed Poincaré structures by Examples [II].3.2.83.2.8. By construction, they all share
the same underlying duality

D𝑋 = hom𝑅(𝑋,𝑀),
where the mapping spectrum acquires a residual𝑅-module structure from the𝑅⊗𝑅-module structure of𝑀 .
The canonical connective cover maps 𝜏≥𝑚+1 → 𝜏≥𝑚 define an infinite sequence of natural transformations

Ϙ
q
𝑀 = Ϙ≥∞𝑀 → ⋯ → Ϙ≥(𝑚+1)𝑀 → Ϙ≥𝑚𝑀 → Ϙ≥(𝑚−1)𝑀 → ⋯ → Ϙ≥−∞𝑀 = Ϙs𝑀 ,

and hence analogous sequences between the corresponding Grothendieck-Witt and L spectra.

R.4. Remark. Let Ĥ𝑚(C2;𝑀) = 𝜋−𝑚H𝑀 tC2 denote the Tate cohomology of C2 with coefficients in the
underlying ℤ[C2]-module of 𝑀 . When Ĥ−𝑚(C2;𝑀) = 0 the map 𝜏≥𝑚+1H𝑀 tC2 → 𝜏≥𝑚H𝑀 tC2 is an
equivalence. Therefore, in this case, Ϙ≥𝑚+1𝑀 → Ϙ≥𝑚𝑀 is an equivalence, and it induces equivalences on the
corresponding Grothendieck-Witt and L spectra

GW(𝑅; Ϙ≥(𝑚+1)𝑀 )
∼

⟶ GW(𝑅; Ϙ≥𝑚𝑀 ) and L(𝑅; Ϙ≥(𝑚+1)𝑀 )
∼

⟶ L(𝑅; Ϙ≥𝑚𝑀 ).

Moreover, Ĥ∗(C2;𝑀) is 2-periodic, so if this happens for 𝑚 it also does for all 𝑚 + 2𝑘. In particular, if
2 ∈ 𝑅 is a unit all the natural transformations Ϙ≥𝑚+1𝑀 → Ϙ≥𝑚𝑀 are equivalences. If 2 is not invertible however,
the Grothendieck-Witt and L spectra for different 𝑚 are not generally equivalent, for instance this is the case
for 𝑅 = ℤ.

R.5. Remark. Among the Poincaré structures of Definition R.3R.3, Ϙ≥2𝑀 , Ϙ
≥1
𝑀 and Ϙ≥0𝑀 are the ones which send

finitely generated projective 𝑅-modules 𝑃 (regarded as chain complexes concentrated in degree zero) to
abelian groups (regarded as discrete spectra). The values of Ϙ≥2𝑀 and Ϙ≥0𝑀 are the abelian groups of strict
coinvariants and invariants, respectively,

Ϙ
≥2
𝑀 (𝑃 ) = Hom𝑅⊗U𝑅(𝑃 ⊗U 𝑃 ,𝑀)C2

and Ϙ
≥0
𝑀 (𝑃 ) = Hom𝑅⊗U𝑅(𝑃 ⊗U 𝑃 ,𝑀)C2 ,

which are canonically isomorphic to the usual abelian groups of 𝑀-valued quadratic and symmetric forms
on 𝑃 , respectively, see §[II].4.24.2. Moreover, the group Ϙ≥1𝑀 (𝑃 ) is the image of the norm (or symmetrization)
map Ϙ≥2𝑀 (𝑃 ) → Ϙ≥0𝑀 (𝑃 ). The functors Ϙ≥2𝑀 , Ϙ

≥1
𝑀 and Ϙ≥0𝑀 are the non-abelian derived functors of these functors

of classical forms on modules, as shown in Proposition [II].4.2.224.2.22. We call them the genuine quadratic,
genuine even, and genuine symmetric Poincaré structures respectively, and we denote them by

Ϙ
gq
𝑀 ∶= Ϙ≥2𝑀 , Ϙ

ge
𝑀 ∶= Ϙ≥1𝑀 and Ϙ

gs
𝑀 ∶= Ϙ≥0𝑀 .

The connective covers of the associated Grothendieck-Witt spectra are the group-completions of the corre-
sponding spaces of forms
𝜏≥0 GW(𝑅; Ϙgq𝑀 ) ≃ GWq

cl(𝑅;𝑀) , 𝜏≥0 GW(𝑅; Ϙge𝑀 ) ≃ GWev
cl (𝑅;𝑀) , 𝜏≥0 GW(𝑅; Ϙgs𝑀 ) ≃ GWs

cl(𝑅;𝑀)

by the main result of [HS21HS21]. In particular if 𝑀 = 𝑅(𝜖) is the ℤ-module with involution defined from an
𝜖-involution on 𝑅 these are the classical Grothendieck-Witt spaces of 𝜖-quadratic, 𝜖-even, and 𝜖-symmetric
forms on 𝑅.



HERMITIAN K-THEORY FOR STABLE ∞-CATEGORIES III: GROTHENDIECK-WITT GROUPS OF RINGS 9

There is a periodicity phenomenon that relates the Poincaré structures Ϙ≥𝑚𝑀 , that we now review. We
recall that a hermitian morphism of Poincaré ∞-categories (C, Ϙ) → (C′, Ϙ′) consists of an exact functor
𝑓 ∶ C → C′ and a natural transformation

𝜂∶ Ϙ → 𝑓 ∗
Ϙ
′ = Ϙ′◦𝑓.

We say that a hermitian morphism (𝑓, 𝜂) is a Poincaré morphism if a canonical induced map 𝑓D → D𝑓
is an equivalence; see §[II].1.21.2. A Poincaré morphism (𝑓, 𝜂) is an equivalence of Poincaré ∞-categories
precisely when 𝑓 is an equivalence of categories and 𝜂 is a natural equivalence. We recall the following
proposition (see Proposition [II].3.5.33.5.3 and Corollary [IIII].4.3.44.3.4), first observed by Lurie in the cases where
𝑚 = ±∞.

R.6. Proposition. For every invertible ℤ-module with involution 𝑀 over 𝑅 and 𝑚 ∈ ℤ ∪ {±∞}, the loop
functor Ω∶ Dp(𝑅) → Dp(𝑅) extends to an equivalence of Poincaré ∞-categories

(Dp(𝑅), (Ϙ≥𝑚𝑀 )[2])
∼

⟶ (Dp(𝑅), Ϙ≥𝑚+1−𝑀 ),

where Ϙ[𝑘] ∶= Σ𝑘Ϙ denotes the 𝑘-fold shift of a Poincaré structure, and −𝑀 is the twist by a sign of
Example R.2R.2.

R.7. Remark. For a commutative ring𝑅, we may apply Proposition R.6R.6 with𝑀 = 𝑅. If we setGW[𝑛](𝑅) =
𝜏≥0 GW(Dp(𝑅); (Ϙ≥0𝑅 )[𝑛]), we obtain from [HS21HS21] the equivalences

GW[0](𝑅) ≃ GWs
cl(𝑅) , GW[2](𝑅) ≃ GW−ev

cl (𝑅) and GW[4](𝑅) ≃ GWq
cl(𝑅).

These equivalences were also announced by Schlichting, see [Sch19bSch19b, Theorem 3.1], where GW[2](𝑅) is
described in terms of symplectic forms. Concretely, symplectic forms are those skew-symmetric forms
𝑏∶ 𝑃 ⊗U 𝑃 → 𝑅 which vanish on the diagonal, i.e. 𝑏(𝑥, 𝑥) = 0 for all 𝑥 in 𝑃 , compare [Sch19aSch19a, Definition
3.8 & Example 3.11]. This condition is in fact equivalent to admitting a (−1)-quadratic refinement, so
symplectic forms are precisely the (−1)-even forms.

To see this, we claim that the Tate cohomology Ĥ0(C2; Hom𝑅⊗U𝑅(𝑃 ⊗U 𝑃 ,𝑅(−1))) is isomorphic to
hom𝑅(𝑃 ,𝑅2) where 𝑅2 denotes the 2-torsion in 𝑅. Combining this isomorphism with the canonical map
from ordinary cohomology to Tate cohomology gives a map

H0(C2; Hom𝑅⊗U𝑅(𝑃 ⊗U 𝑃 ,𝑅(−1))) ⟶ hom𝑅(𝑃 ,𝑅2).

Elements of the domain are skew-symmetric forms 𝑏, and they are sent under this map to the map 𝑥 ↦
𝑏(𝑥, 𝑥). Note that this is an additive map which indeed takes values in the 2-torsion of 𝑅 if 𝑏 is skew-
symmetric. Hence the obstruction to lifting a skew-symmetric form 𝑏 along the norm map

H0(C2; Hom𝑅⊗U𝑅(𝑃 ⊗U 𝑃 ,𝑅(−1))) ⟶ H0(C2; Hom𝑅⊗U𝑅(𝑃 ⊗U 𝑃 ,𝑅(−1))),

is given by the vanishing of 𝑏 on the diagonal as claimed. Of course, one can also give a direct argument
for the existence of a quadratic refinement under the assumption 𝑏(𝑥, 𝑥) = 0.

The shifted quadratic functor relates to that of the original Poincaré ∞-category by means of the Bott-
Genauer sequence, which we now recall. Given a Poincaré ∞-category (C, Ϙ) we can functorially form an
∞-category Met(C, Ϙ) whose underlying ∞-category is the ∞-category of arrows in C, where the Poincaré
structure is defined by

Ϙmet(𝑓 ∶ 𝐿→ 𝑋) = f ib (Ϙ(𝑓 )∶ Ϙ(𝑋) → Ϙ(𝐿)) ,
and with underlying duality D(𝑓 ∶ 𝐿 → 𝑋) = (D(𝑋∕𝐿) → D𝑋), see Definition [II].2.3.52.3.5. The Poincaré
objects of Met(C, Ϙ) are given by Poincaré objects 𝑋 of (C, Ϙ) equipped with a Lagrangian 𝐿 (see §[II].2.32.3);
classically, forms equipped with a Lagrangian are called metabolic forms, hence the notation Met(C, Ϙ).
The Bott-Genauer sequence is the sequence of Poincaré ∞-categories

(C, Ϙ[−1]) ⟶ Met(C, Ϙ) ⟶ (C, Ϙ)

where the underlying functors send an object 𝐿 of C to the arrow 𝐿 → 0, and an object 𝑓 ∶ 𝐿 → 𝑋 in the
arrow category to its target𝑋, respectively; see Lemma [II].2.3.72.3.7. The Bott-Genauer sequence is both a fibre
and a cofibre sequence of Poincaré ∞-categories, that is a Poincaré-Verdier sequence in the terminology of
Paper [IIII], see Example [IIII].1.2.51.2.5. One of the main results of Paper [IIII] is that Grothendieck-Witt theory is
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Verdier localising, that is that it sends Poincaré-Verdier sequences to fibre sequences of spectra. There is
moreover a natural equivalence

GW(Met(C, Ϙ)) ≃ K(C)
established in Corollary [IIII].4.3.14.3.1. Under this identification the Bott-Genauer sequence induces a fibre
sequence of spectra

GW(C, Ϙ[−1])
fgt
⟶ K(C)

hyp
⟶ GW(C, Ϙ)

where the maps are induced by the projection Pn(C, Ϙ[−1]) → CrC that forgets the form and the map
CrC → Pn(C, Ϙ) that sends an object to its hyperbolic form, respectively. By combining these ingredi-
ents with the periodicity of Proposition R.6R.6 we obtain the following general form of Karoubi’s periodicity
theorem. Let U(𝑅, Ϙ) and V(𝑅, Ϙ) be the fibre of hyp and fgt, respectively. The fibre sequence above pro-
vides an equivalence V(𝑅; Ϙ) ≃ ΩU(𝑅; Ϙ[2]) since both are equivalent to ΩGW(𝑅; Ϙ[1]). Combined with
Proposition R.6R.6 we obtain the following.

R.8. Theorem ([IIII].4.3.44.3.4). Let 𝑅 be a ring and 𝑀 an invertible ℤ-module with involution over 𝑅. Then
there is a natural equivalence

V(𝑅; Ϙ≥𝑚𝑀 ) ≃ ΩU(𝑅; Ϙ≥(𝑚+1)−𝑀 )

for every 𝑚 ∈ ℤ, where −𝑀 is the 𝑅⊗U 𝑅-module 𝑀 with the involution (∙) replaced by −(∙).

R.9. Remark. If 2 ∈ 𝑅 is a unit, Theorem R.8R.8 is due to Karoubi [Kar80Kar80]. Since in this case the Poincaré
structures Ϙ≥𝑚𝑀 are all equivalent, it takes the form

V(𝑅; Ϙs𝑀 ) ≃ ΩU(𝑅; Ϙs−𝑀 ).

There is another case where this theorem simplifies, but where 2 does not need to be invertible. Let 𝑅
be a commutative ring which is 2-torsion free, for instance the ring of integers in a number field, and let
𝑀 = 𝑅 with the trivial involution. In this case Ĥ0(C2; −𝑅) = 0 and Ĥ−1(C2;𝑅) = 0, and by Remark R.4R.4
we have that Ϙge−𝑅 = Ϙgs−𝑅 and Ϙgq𝑅 = Ϙge𝑅 . Therefore the periodicity Theorem gives us that

V(𝑅; Ϙgs𝑅 ) ≃ ΩU(𝑅; Ϙgs−𝑅) , V(𝑅; Ϙgs−𝑅) ≃ ΩU(𝑅; Ϙgq𝑅 ) and V(𝑅; Ϙgq𝑅 ) ≃ ΩU(𝑅; Ϙgq−𝑅).

Curiously, V(𝑅; Ϙgq−𝑅) ≃ ΩU(𝑅; Ϙ≥3𝑅 ), and to the best of our knowledge Ϙ≥3𝑅 cannot be expressed in terms of
classical forms.

Given any invariant F of Poincaré ∞-categories which is Verdier localising, the Bott-Genauer sequence
induces a fibre sequence upon applying F. If in addition F(Met(C, Ϙ)) = 0 for any Poincaré ∞-category
(C, Ϙ) (i.e. in the terminology of Paper [IIII] F is in addition bordism invariant), one obtains a canonical
equivalence

F(C, Ϙ[𝑛]) ≃ Σ𝑛F(C, Ϙ)
for every 𝑛 ∈ ℤ (see [Lur11Lur11] and Proposition [IIII].3.5.83.5.8). Examples of bordism invariant functors are L-
theory L(C, Ϙ) and the Tate construction on K-theory K(C, Ϙ)tC2 , where K(C, Ϙ) denotes the K-theory spec-
trum of C with the C2-action induced by the duality underlying Ϙ. In fact, for K(C, Ϙ)tC2 this is an immediate
consequence of classical additivity: K(Met(C, Ϙ)) is equivalent to the induced object indC2

{𝑒} K(C), so that its
Tate construction vanishes. We can again combine these results with the periodicity of Proposition R.6R.6 to
obtain the following.

R.10. Corollary. Let 𝑅 be a ring and 𝑀 an invertible ℤ-module with involution over 𝑅. Then there are
natural equivalences

L(𝑅; Ϙ≥𝑚𝑀 ) ≃ Ω2 L(𝑅; Ϙ≥(𝑚+1)−𝑀 ) and K(𝑅; Ϙ≥𝑚𝑀 )tC2 ≃ Ω2 K(𝑅; Ϙ≥(𝑚+1)−𝑀 )tC2 .

In particular, the spectra L(𝑅; Ϙs𝑀 ), L(𝑅; Ϙq𝑀 ) and K(𝑅;𝑀)tC2 are 4-periodic, and 2 periodic if 𝑅 is an
𝔽2-algebra.

The last observation on the periodicity of the quadratic and symmetric L-spectra is of course due to
Ranicki, and it has been reworked in the present language by Lurie [Lur11Lur11].
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R.11. Remark. Let 𝑅 be a ring. We note that the association 𝑋 ↦ hom𝑅(𝑋,𝑅) refines to an equivalence
of stable ∞-categories

hom𝑅(−, 𝑅)∶ Dp(𝑅)op
≃

⟶ Dp(𝑅op).

Now let Ϙ be a Poincaré structure on Dp(𝑅). By pulling back Ϙ along its induced duality D, we obtain a
Poincaré structure on Dp(𝑅)op, and further pulling back along the above equivalence a Poincaré structure
on Dp(𝑅op) which we denote by Ϙ∨. That is, Ϙ∨ is the composite

Ϙ
∨ ∶ Dp(𝑅op)op

≃
⟶ Dp(𝑅)

D
⟶ Dp(𝑅)op

Ϙ

⟶ S𝑝.

By construction, there is therefore an equivalence of Poincaré ∞-categories

(Dp(𝑅), Ϙ) ≃ (Dp(𝑅op), Ϙ
∨
).

In particular, we have GW(𝑅op; Ϙ∨) ≃ GW(𝑅; Ϙ) and likewise L(𝑅op; Ϙ∨) ≃ L(𝑅; Ϙ). For a ring with
involution 𝑅, the invertible ℤ-module 𝑀 = 𝑅 is self dual, so that one finds GW(𝑅) ≃ GW(𝑅op) and
likewise L(𝑅) ≃ L(𝑅op).

R.12. Notation. Let F be a functor, such as GW or L, from the category of Poincaré ∞-categories to spectra.
We introduce the following compact notation for the value of F at the perfect derived ∞-category of𝑅with
one of the Poincaré structures Ϙ𝛼𝑀 discussed above:

F𝛼(𝑅;𝑀) ∶= F(Dp(𝑅), Ϙ𝛼𝑀 )

If 𝑀 = 𝑅(𝜖) is the ℤ-module with involution associated to an 𝜖-involution on 𝑅 as in Example R.2R.2, we
write

Ϙ
𝛼
𝜖 ∶= Ϙ𝛼𝑅(𝜖) and F𝛼(𝑅; 𝜖) ∶= F𝛼(𝑅;𝑅(𝜖))

for any of the decorations 𝛼 above. In the special cases where 𝜖 = ±1 we will further write

Ϙ
𝛼 ∶= Ϙ𝛼1 = Ϙ𝛼𝑅
Ϙ
𝛼
− ∶= Ϙ𝛼−1 = Ϙ

𝛼
𝑅(−1)

F𝛼(𝑅) ∶= F𝛼(𝑅; 1) = F𝛼(𝑅;𝑅)
F−𝛼(𝑅) ∶= F𝛼(𝑅; −1) = F𝛼(𝑅;𝑅(−1)).

The homotopy groups of any of these spectra will be denoted by adding a subscriptF𝛼𝑛 (𝑅;𝑀) ∶= 𝜋𝑛F𝛼(𝑅;𝑀)
for every 𝑛 ∈ ℤ.

1. L-THEORY AND ALGEBRAIC SURGERY

This section is devoted to exploring L-theory in the context of modules with involution. In §1.11.1 we
recall the generators and relations description of the L-groups, and an important construction which allows
to manipulate representatives in such L-groups (without changing the class in L-theory) called algebraic
surgery.

In §1.21.2, we prove a surgery result for Poincaré structures which we call 𝑚-quadratic, for 𝑚 ∈ ℤ, and
use this to represent L-theory classes by Poincaré objects which satisfy certain connectivity bounds. In
particular this allows us to show that the L-groups Lgs

𝑛 (𝑅;𝑀) coincide with Ranicki’s original definition of
symmetric L-theory of short complexes, Theorem 55 from the introduction.

Finally, in §1.31.3 we prove a surgery result for Poincaré structures which we call 𝑟-symmetric, for 𝑟 ∈ ℤ,
in case the ring under consideration is coherent of finite global dimension. We will use this to show that
the genuine symmetric L-groups are isomorphic to the symmetric L-groups in sufficiently high degrees,
and consequently the analogous statement for the Grothendieck-Witt groups, which are Theorem 66 and
Theorem 33 of the introduction.
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1.1. L-theoretic preliminaries. For the whole section we let 𝑅 be a ring, 𝑀 an invertible ℤ-module with
involution over 𝑅, and D = hom𝑅(−,𝑀) the corresponding duality on Dp(𝑅). We recall that Ϙq𝑀 denotes
the quadratic Poincaré structure on Dp(𝑅), defined as the homotopy coinvariants Ϙq𝑀 (𝑋) = hom𝑅⊗𝑅(𝑋 ⊗
𝑋,𝑀)hC2

, and that the symmetric Poincaré structure Ϙs𝑀 is defined in an analogous way by taking homotopy
invariants.

1.1.1. Remark. If a Poincaré structure Ϙ∶ Dp(𝑅)op → S𝑝 has underlying duality D, we will say that Ϙ is
compatible with 𝑀 . In this case, the canonical map Ϙq𝑀 → Ϙs𝑀 factors as in Construction [II].3.2.63.2.6 into a
pair of natural transformations

Ϙ
q
𝑀 ⟶ Ϙ⟶ Ϙ

s
𝑀 ,

exhibiting Ϙq𝑀 and Ϙs𝑀 respectively as the initial and the final Poincaré structure compatible with 𝑀 , see
Corollary [II].1.3.61.3.6.

We recall that a spectrum 𝐸 is 𝑚-connective for some integer 𝑚 ∈ ℤ if 𝜋𝑘𝐸 = 0 for all 𝑘 < 𝑚, and
𝑚-truncated if 𝜋𝑘𝐸 = 0 for all 𝑘 > 𝑚.

1.1.2. Definition. For every 𝑟 ∈ ℤ we will say that Ϙ is 𝑟-symmetric if for every finitely generated projective
module 𝑃 ∈ Proj(𝑅) the fibre of Ϙ(𝑃 [0]) → Ϙs𝑀 (𝑃 [0]) is (−𝑟)-truncated. Dually, for 𝑚 ∈ ℤ we will say
that Ϙ is 𝑚-quadratic if the cofibre of Ϙq𝑀 (𝑃 [0]) → Ϙ(𝑃 [0]) is 𝑚-connective for every 𝑃 ∈ Proj(𝑅).

1.1.3. Remark. Note that the fibre of Ϙ → Ϙs𝑀 and the cofibre of Ϙq𝑀 → Ϙ are exact (contravariant) functors.
It thus suffices to check the conditions in the definition for𝑚-quadratic and 𝑟-symmetric Poincaré structures
only in the case where 𝑃 = 𝑅.

It also follows that the collection of 𝑋 ∈ Dp(𝑅) for which the above fibre is (−𝑟)-truncated for a given
𝑟 ∈ ℤ is closed under suspensions and extensions. In particular, if Ϙ is 𝑟-symmetric then the fibre of
Ϙ(𝑋) → Ϙs𝑀 (𝑋) is (−𝑟 − 𝑘)-truncated for every 𝑘-connective 𝑋.

Dually, for a given 𝑚 ∈ ℤ the collection of D𝑋 ∈ Dp(𝑅) for which the above cofibre is 𝑚-connective
is closed under suspensions and extensions. In particular, if Ϙ is 𝑚-quadratic then the cofibre of Ϙq𝑀 (𝑋) →
Ϙ(𝑋) is (𝑚 + 𝑘)-connective whenever D𝑋 is 𝑘-connective.

1.1.4. Example. The symmetric Poincaré structure Ϙs𝑀 is 𝑟-symmetric for every 𝑟 and the quadratic Poincaré
structure Ϙq𝑀 is 𝑚-quadratic for every 𝑚. More generally, from the fibre sequences

𝜏≤𝑚−2Ω𝑀 tC2 → Ϙ≥𝑚𝑀 (𝑅) → Ϙs𝑀 (𝑅) and Ϙ
q
𝑀 (𝑅) → Ϙ≥𝑚𝑀 (𝑅) → 𝜏≥𝑚𝑀

tC2

we find that the Poincaré structure Ϙ≥𝑚𝑀 is 𝑚-quadratic and (2 − 𝑚)-symmetric. In particular, Ϙgs𝑀 is 2-
symmetric and 0-quadratic, Ϙge𝑀 is 1-symmetric and 1-quadratic and Ϙgq𝑀 is 0-symmetric and 2-quadratic.

1.1.5. Example. Let 𝑅 be a ring and Ϙ an 𝑀-compatible 𝑟-symmetric and 𝑚-quadratic Poincaré structure
on Dp(𝑅). Then Ϙ∨ is an 𝑀∨-compatible 𝑟-symmetric and 𝑚-quadratic Poincaré structure on Dp(𝑅op). To
see that Ϙ∨ is 𝑚-quadratic, it suffices to show that the cofibre of the map

Ϙ
q
𝑀∨ (𝑅op) ⟶ Ϙ

∨(𝑅op)

is 𝑚-connective. By Remark R.11R.11, this map is given by the map

(Ϙq𝑀 )(𝑀[0]) ⟶ Ϙ(𝑀[0])

whose cofibre is 𝑚-connective by the assumption that Ϙ is 𝑚-quadratic and that 𝑀 is finitely generated
projective. A similar argument shows that Ϙ∨ is 𝑟-symmetric.

As explained earlier, one goal of this paper is to show that the genuine symmetric L-groups coincide
with Ranicki’s classical symmetric L-groups of [Ran80Ran80], for which elements can be represented by chain
complexes 𝑋 which are concentrated in a specific range of degrees. The following lemma shows that this
can be equivalently phrased in terms of connectivity estimates for 𝑋 and D𝑋. The latter will be more
convenient to work with for us.

1.1.6. Lemma. Let 𝑋 ∈ Dp(𝑅) a perfect 𝑅-module and 𝑘 ≤ 𝑙 integers. Then the following conditions are
equivalent:
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i) 𝑋 can be represented by a chain complex of the form

⋯ → 0 → 𝑃𝑙 → 𝑃𝑙−1 → ⋯ → 𝑃𝑘 → 0 → ⋯

where each 𝑃𝑖 is a finitely generated projective 𝑅-module concentrated in homological degree 𝑖.
ii) 𝑋 is 𝑘-connective and D𝑋 is (−𝑙)-connective.

Proof. The implication i)i) ⇒ ii)ii) is clear. For the other implication, let 𝐶 be a complex of finitely generated
projective 𝑅-modules of minimum length representing 𝑋. We claim that 𝐶 is concentrated in the range
[𝑘, 𝑙]. Let 𝑖 be the minimal integer such that 𝐶𝑖 ≠ 0. We claim that 𝑖 ≥ 𝑘. Indeed, suppose that 𝑖 < 𝑘. Since
𝑋 is 𝑘-connective we have that H𝑖(𝐶) = 0 and so the differential 𝐶𝑖+1 → 𝐶𝑖 is a surjection of projective
modules, hence a split surjection of projective modules, hence a surjection whose kernel𝑁 ∶= ker(𝐶𝑖+1 →
𝐶𝑖) is projective. Removing 𝐶𝑖 and replacing 𝐶𝑖+1 with 𝑁 thus yields a shorter complex representing 𝑋,
contradicting the minimality of 𝐶 . We may hence conclude that 𝐶 is concentrated in degrees ≥ 𝑘.

Let now D𝐶 be the complex given by (D𝐶)𝑖 ∶= D(𝐶−𝑖). Since 𝑀 is finitely generated projective
D𝐶 = hom𝑅(𝐶,𝑀) ∈ Chb(𝑅) represents D𝑋 ∈ Dp(𝑅), and is thus also a complex of minimal length
representing D𝑋. Since D𝑋 is assumed to be (−𝑙)-connective, the same argument as above shows that D𝐶
is concentrated in degrees ≥ −𝑙. It then follows that 𝐶 is concentrated in degrees ≤ 𝑙, and hence in the
range [𝑘, 𝑙], as desired. □

1.1.7. Remark. Lemma 1.1.61.1.6 does not really require a duality. In its absence the statement still holds if we
treat D𝑋 = hom𝑅(𝑋,𝑅) as an object of Dp(𝑅op). For later use, we also remark that our proof also shows
that𝑋 is 𝑘-connective if and only if it can be represented by a chain complex of finitely generated projective
modules which are trivial below degree 𝑘.

1.1.8. Remark. If 𝑀 is moreover free as an 𝑅-module, the proof of Lemma 1.1.61.1.6 works verbatim to
show that for 𝑋 ∈ Df (𝑅), condition ii)ii) above is equivalent to 𝑋 being representable by a complex as
in Lemma 1.1.61.1.6 with each 𝑃𝑖 a finitely generated stably free 𝑅-module. More generally, if Free(𝑅) ⊆ C ⊆
Proj(𝑅) is any intermediate full subcategory closed under the duality and under direct sums, and 𝑋 can be
represented by a bounded complex valued in C, then the argument in the proof below yields that condition ii)ii)
above is equivalent to 𝑋 being representable by a complex as in i)i) with each 𝑃𝑖 stably in C (that is, such
that there exist 𝑄𝑖 ∈ C with 𝑃𝑖 ⊕𝑄𝑖 ∈ C).

L-theory and surgery. The purpose of this subsection is to recall some fundamental properties of L-theory.
For the construction of the L-theory spectra, we refer to [Lur11Lur11] and §[IIII].4.44.4. However, a key feature
of the L-spectrum L(C, Ϙ) is that its homotopy groups have a very simple presentation: They are given
by cobordism groups of Poincaré objects. Let us explain what this means precisely, as we rely on this
construction throughout the section. We recall that the space Pn(C, Ϙ) is the space of Poincaré objects, that
is of pairs (𝑋, 𝑞) of an object 𝑋 in C and a point 𝑞 ∈ Ω∞

Ϙ(𝑋) such that a canonically associated map

𝑞♯ ∶ 𝑋 ⟶ D𝑋

is an equivalence. Likewise, there is the space Pn𝜕(C, Ϙ) of Poincaré pairs, that is of triples (𝑓 ∶ 𝐿→ 𝑋, 𝑞, 𝜂)
with 𝑞 ∈ Ω∞

Ϙ(𝑋) and 𝜂 a nullhomotopy of 𝑓 ∗(𝑞), such that the canonically associated map

𝜂♯ ∶ 𝑋∕𝐿⟶ D𝐿

induced on the quotient 𝑋∕𝐿 by 𝜂 is an equivalence. In this case we say that 𝐿 is a Lagrangian in 𝑋 (or
also that 𝐿 is a nullcobordism of 𝑋). It turns out that Pn𝜕(C, Ϙ) = Pn(Met(C, Ϙ)) where Met(C, Ϙ) is the
metabolic category associated to Ϙ as in §[II].2.32.3. We find that forgetting the Lagrangian provides a map
Pn𝜕(C, Ϙ) → Pn(C, Ϙ), which is induced from the Poincaré functor Met(C, Ϙ) → (C, Ϙ) sending 𝐿 → 𝑋 to
𝑋.

1.1.9. Definition. We say that Poincaré objects (𝑋, 𝑞) and (𝑋′, 𝑞′) are cobordant if (𝑋 ⊕ 𝑋′, 𝑞 ⊕ (−𝑞′))
admits a Lagrangian, i.e. is nullcobordant. We define the 𝑛’th L-group L𝑛(C, Ϙ) as the group of cobordism
classes of Poincaré objects (𝑋, 𝑞) for the Poincaré structure Ϙ[−𝑛] ∶= Ω𝑛Ϙ.

1.1.10. Remark. We remark that the cobordism relation is a congruence relation with respect to⊕, and that
the diagonal 𝑋 → 𝑋 ⊕𝑋 is a canonical Lagrangian for (𝑋 ⊕𝑋, 𝑞 ⊕ (−𝑞)), so that L𝑛(C, Ϙ) is indeed an
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abelian group. In particular, the L-groups fit into an exact sequence of monoids

𝜋0(Pn𝜕(C, Ϙ[−𝑛]))
𝜕

⟶ 𝜋0(Pn(C, Ϙ[−𝑛])) ⟶ L𝑛(C, Ϙ) ⟶ 0.

We also note that the above definition of L-groups is equivalent to the one of Definition [II].2.3.112.3.11, where
L𝑛(C, Ϙ) was defined as the cokernel of the map 𝜕 in the category of ordinary commutative monoids. Indeed,
by exactness of the above sequence, we obtain a map of monoids coker(𝜕) → L𝑛(C, Ϙ) which is surjective
and has trivial kernel. Since coker(𝜕) is in fact a group by Lemma [II].2.3.102.3.10, this map is an isomorphism.

1.1.11. Notation. In the case of the category C = Dp(𝑅), we will denote the L-groups and L-spectra re-
spectively by

L𝑛(𝑅; Ϙ) ∶= L𝑛(Dp(𝑅), Ϙ) and L(𝑅; Ϙ) ∶= L(Dp(𝑅), Ϙ).
When Ϙ = Ϙ𝛼 is one of the genuine functors associated to an invertible ℤ-module with involution 𝑀
analysed in the previous section, we use the notation L𝛼(𝑅;𝑀) established in Notation R.12R.12 for the corre-
sponding L-groups.

1.1.12. Remark. It is immediate from the definition that Lq(𝑅;𝑀) and Ls(𝑅;𝑀) are respectively the usual
quadratic and symmetric L-theory spectra of 𝑅 of [Lur11Lur11] which also agree with the L-spectra of Ranicki
[Ran92Ran92]. The other variants are, however, more mysterious, and their study is the focus of this section.

We note that given a Lagrangian for (𝑋, 𝑞), i.e. a Poincaré object of the metabolic category, through the
eyes of L-theory, we may replace (𝑋, 𝑞) by 0. Such a procedure in fact works more generally if we start with
only a hermitian object for the metabolic category and is the content of algebraic surgery. We recall that the
hermitian objects of the metabolic category consist of triples (𝑓 ∶ 𝐿→ 𝑋, 𝑞, 𝜂) such that 𝑞 ∈ Ω∞

Ϙ(𝑋) and
𝜂 is a nullhomotopy of 𝑓 ∗(𝑞). In many cases of interest, the object (𝑋, 𝑞) is Poincaré, and in this situation
we will refer to 𝐿, or more precisely to (𝑓, 𝜂), as a surgery datum on (𝑋, 𝑞). The non-degeneracy condition
for this triple to be a Poincaré object for the metabolic category is that the map 𝜂♯ ∶ 𝑋∕𝐿 ⟶ D𝐿 defined
above is an equivalence, i.e. if its fibre 𝑋′ is 0. In general, 𝑋′ need not vanish, but nevertheless acquires a
canonical Poincaré form 𝑞′ induced from (𝑓, 𝑞, 𝜂). In fact, we have the following result; see §[IIII].2.42.4 for a
general discussion of algebraic surgery.

1.1.13. Proposition. Let (𝑋, 𝑞) be a Poincaré object for Ϙ with surgery datum (𝑓 ∶ 𝐿 → 𝑋, 𝜂). Then the
object 𝑋′ carries a canonical Poincaré form 𝑞′ such that (𝑋, 𝑞) and (𝑋′, 𝑞′) are cobordant.

1.1.14. Remark. The underlying object of 𝑋′ and the of the cobordism 𝜒(𝑓 ) between 𝑋 and 𝑋′ are sum-
marised in the following surgery diagram consisting of horizontal and vertical fibre sequences.

(4)

𝐿 𝐿 0

𝜒(𝑓 ) 𝑋 D𝐿

𝑋′ 𝑋∕𝐿 D𝐿

D𝑓◦𝑞♯

𝜂♯

We can use this to perform the following construction, which we will refer to as Lagrangian surgery.

1.1.15. Construction. Let (𝐿 → 𝑋, 𝑞, 𝜂) be a Lagrangian for a Poincaré object (𝑋, 𝑞). Equivalently, we
may view (𝐿 → 𝑋, 𝑞, 𝜂) as a Poincaré object of the metabolic category Met(C, Ϙ). Now, given a surgery
datum for this Poincaré object, i.e. a commutative diagram

𝑍 𝑊

𝐿 𝑋

and a null-homotopy of Φ∗(𝑞, 𝜂) in Ϙmet(𝑍 → 𝑊 ), we may thus perform surgery by Proposition 1.1.131.1.13
to obtain a new Poincaré object (𝐿′ → 𝑋′, 𝑞′, 𝜂′) of Met(C, Ϙ). We observe that the map 𝑊 → 𝑋 is
canonically a surgery datum on (𝑋, 𝑞) and that (𝑋′, 𝑞′) is the result of surgery with this surgery datum. In
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particular, if 𝑊 = 0, then (𝑋′, 𝑞′) is canonically equivalent to (𝑋, 𝑞). Moreover, by diagram (44) the new
Lagrangian 𝐿′ sits inside a fibre sequence

𝐿′ ⟶ 𝐿∕𝑍 ⟶ ΩD𝑍.

We will refer to such surgery data as Lagrangian surgery data and refer to the surgery as a Lagrangian
surgery. We will then also say that 𝐿 is cobordant to 𝐿′ relative to 𝑋. For future reference, we notice
that the underlying map of a Lagrangian surgery datum is equivalently described by a map 𝑍 → 𝑁 =
fib(𝐿 → 𝑋). If we denote by 𝑁 ′ the fibre of the map 𝐿′ → 𝑋, then we obtain likewise a fibre sequence
𝑁 ′ → 𝑁∕𝑍 → ΩD𝑍.

1.2. Surgery for 𝑚-quadratic structures. In this section we will show how to apply algebraic surgery to
Poincaré structure which are sufficiently quadratic and use this to show that the genuine symmetric L-groups
coincide with Ranicki’s symmetric L-groups of short complexes; see Theorem 1.2.221.2.22. We also show that
in sufficiently small degrees, the L-groups of an 𝑚-quadratic functor coincide with the quadratic L-groups;
see Corollary 1.2.121.2.12. The surgery arguments we present below are designed to replace (shifted) Poincaré
objects and Lagrangians by cobordant counterparts which are suitably connective. The following definition
summarises the kind of connectivity we seek:

1.2.1. Definition. Let𝑀 be an invertible ℤ-module with involution over𝑅, Ϙ a Poincaré structure on Dp(𝑅)
compatible with 𝑀 . Let 𝑛, 𝑎, 𝑏 ∈ ℤ be such that 𝑎, 𝑏 ≥ −1, 𝑏 ≥ 𝑎 − 1, and (𝑛 + 𝑎) is even.

i) We denote by Pn𝑎𝑛(𝑅, Ϙ) ⊆ Pn(Dp(𝑅), Ϙ[−𝑛]) the subspace spanned by those Poincaré objects (𝑋, 𝑞)
such that 𝑋 is (−𝑛−𝑎2 )-connective.

ii) We denote by M
𝑎,𝑏
𝑛 (𝑅, Ϙ) ⊆ Pn𝜕(Dp(𝑅), Ϙ[−𝑛]) the subspace spanned by those Poincaré pairs (𝐿 →

𝑋, 𝑞, 𝜂) such that 𝑋 is (−𝑛−𝑎2 )-connective, 𝐿 is ⌈

−𝑛−1−𝑏
2 ⌉-connective and 𝑁 ∶= f ib(𝐿 → 𝑋) ≃

Ω𝑛+1D𝐿 is ⌊−𝑛−1−𝑏2 ⌋-connective. We refer to such an 𝐿 as an allowed Lagrangian for (𝑋, 𝑞).
Finally, we define

L𝑎,𝑏𝑛 (𝑅; Ϙ) = coker
(

𝜋0M
𝑎,𝑏
𝑛 (𝑅, Ϙ) → 𝜋0Pn𝑎𝑛(𝑅, Ϙ)

)

as the cokernel in the category of monoids of the map that forgets the Lagrangian.

1.2.2. Remark. The definitions are made such that L𝑎,𝑏𝑛 (𝑅; Ϙ) is the monoid of 𝑛-dimensional Poincaré
objects of width 𝑎 modulo those which admit a Lagrangian of width 𝑏.

More precisely, the connectivity assumption of case i)i) guarantees that𝑋 can be represented by a complex
concentrated in the range [−𝑛−𝑎2 , −𝑛+𝑎2 ], and consequently having width 𝑎. This uses Lemma 1.1.61.1.6 and that
D𝑋 ≃ 𝑋[𝑛] is ( 𝑛−𝑎2 )-connective. In particular, as an example we have Pn−1𝑛 (𝑅, Ϙ) ≃∗.

In case ii)ii), 𝑋 can again be represented by a complex concentrated in degrees [−𝑛−𝑎2 , −𝑛+𝑎2 ], and the
assumptions on 𝐿 and 𝑁 can be divided into the following two cases. If 𝑏 + 𝑛 is odd, the connectivity
assumptions on𝑋 and𝑁 imply the one on𝐿, and both𝐿 and𝑁 can be represented by complexes in degrees
[−𝑛−1−𝑏2 , −𝑛−1+𝑏2 ]. Here for the upper bound on 𝐿 we use the connectivity of 𝑁 and that D𝐿 = 𝑁[𝑛 + 1].
If however 𝑏 + 𝑛 is even, then necessarily we have 𝑏 ≥ 𝑎, and it is the connectivity assumptions on 𝑋 and
𝐿 which imply the one on 𝑁 . Then 𝐿 can be represented by a complex in degrees [−𝑛−𝑏2 , −𝑛+𝑏2 ] whereas 𝑁
by one in degrees [−𝑛−𝑏2 − 1, −𝑛+𝑏2 − 1].

In the current section on quadratic surgery we exclusively use the case where 𝑏 + 𝑛 is odd. However, in
the next section on symmetric surgery we will have to consider both parities of 𝑏 + 𝑛.

1.2.3. Remark. If 𝑏 ≥ 𝑎, the diagonal inside (𝑋, 𝑞)⊕ (𝑋,−𝑞) is an allowed Lagrangian, so that L𝑎,𝑏𝑛 (𝑅; Ϙ)
is in fact a group. In Proposition 1.2.61.2.6 we will show, under additional hypotheses on the Poincaré structure
Ϙ, that L𝑎,𝑎−1𝑛 (𝑅; Ϙ) is also a group.

1.2.4. Remark. Let Ϙ∶ Dp(𝑅)op → S𝑝 be a Poincaré structure whose associated duality preservesProj(𝑅) ⊆
Dp(𝑅). A Poincaré object (𝑃 , 𝑞) ∈ 𝜋0Pn00(𝑅, Ϙ), i.e. one where 𝑃 ∈ Proj(𝑅) ⊆ Dp(𝑅), is said to be strictly
metabolic if there exists a submodule 𝐿 ⊆ 𝑃 such that 𝐿 is projective, 𝑞

|𝐿 vanishes in 𝜋0Ϙ(𝐿) and the
sequence

(5) 0 ⟶ 𝐿⟶ 𝑃 ⟶ D𝐿⟶ 0
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is exact. One defines the Witt groupW(Proj(𝑅); Ϙ) as the quotient the monoid 𝜋0Pn00(𝑅, Ϙ) by the submonoid
generated by the strictly metabolic objects. We note that if Ϙ restricts to a functor Ϙ∶ Proj(𝑅)op → A𝑏 ⊆ S𝑝,
this is the classical Witt group as defined for instance in [Kne70Kne70].

We now argue that there is a canonical isomorphism W(Proj(𝑅); Ϙ) ≅ L0,0
0 (𝑅; Ϙ). Indeed, it suffices to

verify that a Poincaré object (𝑃 , 𝑞) ∈ 𝜋0Pn00(𝑅, Ϙ) is strictly metabolic if and only if if it admits an allowed
Lagrangian. The “if” direction is clear, and to see the “only if” part observe that if (𝑃 , 𝑞) is strictly metabolic
then any null homotopy 𝜂 of 𝑞

|𝐿 makes the pair (𝐿 → 𝑋, 𝜂) an allowed Lagrangian, because the question
whether or not the square

𝐿 𝑃

0 D𝐿
is cartesian is equivalent to the exactness of the sequence (55) and hence independent of the chosen null
homotopy 𝜂.

1.2.5. Remark. Let us briefly digress about strictly metabolic objects for 1-quadratic Poincaré structures.
So suppose that 𝑃 is a finitely generated projective𝑅-module, and that (𝑃 , 𝑞) is a strictly metabolic Poincaré
object with respect to a 1-quadratic Poincaré structure. Let 𝐿 → 𝑃 be a strict Lagrangian, so that the fibre
of the map 𝐿 → 𝑃 is equivalent to (D𝐿)[−1] and that 𝑃 ≅ 𝐿⊕ D𝐿. By the algebraic Thom isomorphism
[II].2.4.62.4.6, the space of Poincaré structures on the object 𝐿 → 𝑃 of the metabolic category is equivalently
described by the space of shifted forms ΩϘ(D𝐿[−1]), which is connected as Ϙ is 1-quadratic. It follows that
(𝑃 , 𝑞) is equivalent to hyp(𝐿), the hyperbolic form on 𝐿. This recovers the well-known classical fact that a
strictly metabolic quadratic form on a finitely generated projective module is hyperbolic.

For the remainder of the section we fix an invertibleℤ-module with involution𝑀 over𝑅, and we consider
only Poincaré structures Ϙ on Dp(𝑅) which are compatible with𝑀 , and we denote the underlying duality by
D = hom𝑅(−,𝑀). To put the assumptions of the next result into context, recall that the Poincaré structure
Ϙ
≥𝑚
𝑀 is 𝑚-quadratic.

1.2.6. Proposition (Surgery for 𝑚-quadratic Poincaré structures). Let Ϙ be an 𝑚-quadratic Poincaré struc-
ture on Dp(𝑅). Fix an 𝑛 ∈ ℤ and let 𝑎, 𝑏 ≥ 0 be two non-negative integers with 𝑏 ≥ 𝑎 − 1, and such that
𝑛 + 𝑎 and 𝑛 + 1 + 𝑏 are even.

i) If 𝑎 ≥ 𝑛 − 2𝑚 then every Poincaré object in (Dp(𝑅), Ϙ[−𝑛]) is cobordant to one which is
(−𝑛−𝑎

2

)

-
connective.

ii) If 𝑏 ≥ 𝑛 − 2𝑚 + 1 then every Lagrangian 𝐿 → 𝑋 of a
(−𝑛−𝑎

2

)

-connective Poincaré object (𝑋, 𝑞) ∈
Pn(Dp(𝑅), Ϙ[−𝑛]) is cobordant relative to 𝑋 to a Lagrangian 𝐿′ → 𝑋 such that both 𝐿′ and f ib[𝐿′ →
𝑋] are

(−𝑛−1−𝑏
2

)

-connective.

In particular, if both inequalities above hold the monoid L𝑎,𝑏𝑛 (𝐴; Ϙ) is a group and the canonical map
L𝑎,𝑏𝑛 (𝐴; Ϙ) → L𝑛(𝐴; Ϙ) is an isomorphism.

1.2.7. Remark. Recalling Remark 1.2.21.2.2 we note that the Poincaré objects appearing in i)i) above are concen-
trated in degrees [−𝑛−𝑎2 , −𝑛+𝑎2 ] and the Lagrangians in ii)ii) are concentrated in degrees [−𝑛−1−𝑏2 , −𝑛−1+𝑏2 ].

Before diving into the proof of this proposition, let us give some immediate consequences.

1.2.8. Example. The quadratic Poincaré structure Ϙq𝑀 is 𝑚-quadratic for every 𝑚. Given 𝑛 = 2𝑘 ∈ ℤ,
we may apply Proposition 1.2.61.2.6 to Ϙq𝑀 with (𝑎, 𝑏) = (0, 1) and deduce that every class in Lq

𝑛(𝑅;𝑀) can
be represented by a Poincaré object which is concentrated in degree −𝑘, and that such a Poincaré object
represents zero in Lq

𝑛(𝑅;𝑀) if and only if it admits a Lagrangian which is concentrated in degrees [−𝑘 −
1,−𝑘]. On the other hand, if 𝑛 = 2𝑘 + 1 is odd we may apply Proposition 1.2.61.2.6 to Ϙq𝑀 with (𝑎, 𝑏) = (1, 0)
and get that every class in Lq

𝑛(𝑅;𝑀) can be represented by a Poincaré object which is concentrated in
degree [−𝑘 − 1,−𝑘], and that such a Poincaré object represents zero in Lq

𝑛(𝑅;𝑀) if and only if it admits
a Lagrangian which is concentrated in degree −𝑘 − 1. This is often referred to in the literature as surgery
below the middle dimension. In fact, Proposition 1.2.61.2.6 gives this statement for any 𝑚-quadratic Poincaré
structure, as long as we take 𝑛 ≤ 2𝑚.
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1.2.9. Corollary. For any 𝑛 ≥ 0, every class in Lgs
𝑛 (𝑅;𝑀) can be represented by a Poincaré object which

is concentrated in degrees [−𝑛, 0], and such a Poincaré object represents zero in Lgs
𝑛 (𝑅;𝑀) if and only

if it admits a Lagrangian which is concentrated in degrees [−𝑛 − 1, 0]. In particular, the canonical map
L𝑛,𝑛+1𝑛 (𝑅; Ϙgs𝑀 ) → L𝑛(𝑅; Ϙ

gs
𝑀 ) = Lgs

𝑛 (𝑅;𝑀) is an isomorphism for all 𝑛 ≥ 0.

Proof. The genuine symmetric Poincaré structure Ϙgs𝑀 is 0-quadratic. Given 𝑛 ≥ 0 ∈ ℤ we may thus apply
Proposition 1.2.61.2.6 to Ϙgs𝑀 with (𝑎, 𝑏) = (𝑛, 𝑛 + 1) so that L(𝑅; Ϙgs𝑀 ) ≅ L𝑛,𝑛+1𝑛 (𝑅; Ϙgs𝑀 ). □

The proof of Proposition 1.2.61.2.6 will require the following connectivity estimate:

1.2.10. Lemma. Suppose that Ϙ is an 𝑚-quadratic Poincaré structure on Dp(𝑅). Then for every projective
module 𝑃 ∈ Proj(𝑅) and every 𝑘 ∈ ℤ the spectrum Ϙ(𝑃 [𝑘]) is min(−2𝑘, 𝑚 − 𝑘)-connective.

Proof. The cofibre of the map Ϙq𝑀 (𝑃 [𝑘]) → Ϙ(𝑃 [𝑘]) is (𝑚 − 𝑘)-connective by the assumption that Ϙ is
𝑚-quadratic, see Remark 1.1.31.1.3. Furthermore, Ϙq𝑀 (𝑃 [𝑘]) = (hom𝑅⊗𝑅(𝑃 ⊗ 𝑃 ,𝑀)[−2𝑘])hC2

and is thus
(−2𝑘)-connective as 𝑃 is projective and homotopy orbits preserve connectivity. □

Proof of Proposition 1.2.61.2.6. To prove i)i), suppose that (𝑋, 𝑞) is a Poincaré object in (Dp(𝑅), Ϙ[−𝑛]). If 𝑋
itself is (−𝑛−𝑎2 )-connective, we are done. Otherwise, since 𝑋 is perfect, there exists some 𝑘 < −𝑛−𝑎

2 such
that𝑋 is 𝑘-connective. By Lemma 1.1.61.1.6 the object𝑋 can be represented by a chain complex of projectives
concentrated in degrees ≥ 𝑘 and so there exists a projective module 𝑃 and a map 𝑓 ∶ 𝑃 [𝑘] → 𝑋 which
is surjective on H𝑘. By Lemma 1.2.101.2.10, the spectrum Ϙ(𝑃 [𝑘]) is min(−2𝑘, 𝑚 − 𝑘)-connective and since
𝑘 < −𝑛−𝑎

2 we have that

min(−2𝑘, 𝑚 − 𝑘) > min
(

𝑛 + 𝑎, 2𝑚 + 𝑛 + 𝑎
2

)

≥ 𝑛

by the inequalities in our assumptions. It then follows that Ω∞+𝑛
Ϙ(𝑃 [𝑘]) is connected and hence 𝑞 restricted

to 𝑃 [𝑘] is null-homotopic, so that any nullhomotopy 𝜂, makes (𝑃 [𝑘] → 𝑋, 𝑞, 𝜂) a hermitian form for the
metabolic category. We may therefore apply Proposition 1.1.131.1.13 and perform surgery along 𝑓 ∶ 𝑃 [𝑘] → 𝑋
to obtain a cobordant Poincaré object 𝑋′, given by the fibre of the induced map 𝑋∕𝑃 [𝑘] → D(𝑃 )[−𝑘− 𝑛].
Since −2𝑘 − 1 > 𝑛 + 𝑎 ≥ 𝑛 (here we use that 𝑛 + 𝑎 is even) we have that −𝑘 − 𝑛 > 𝑘 + 1 and so

H𝑘′ (𝑋′) = H𝑘′ (𝑋) = 0 for 𝑘′ < 𝑘 and H𝑘(𝑋′) ≅ coker[𝑃 → H𝑘(𝑋)] = 0,

which means that 𝑋′ is (𝑘 + 1)-connective. Proceeding inductively we may thus obtain a Poincaré object
(𝑋′′, 𝑞′′) which is cobordant to (𝑋, 𝑞) and which is (−𝑛−𝑎2 )-connective. Let us now prove Claim ii)ii). Let
(𝑋, 𝑞) ∈ Pn(Dp(𝑅), Ϙ[−𝑛]), and suppose that 𝑋 is (−𝑛−𝑎2 )-connective and that it admits a Lagrangian (𝐿 →

𝑋, 𝜂). Let𝑁 be the fibre of the map 𝐿→ 𝑋. If𝑁 is (−𝑛−1−𝑏2 )-connective, then, since 𝑏 ≥ 𝑎−1 so is 𝐿 and
we are done. Otherwise, let 𝑙 < −𝑛−1−𝑏

2 be such that𝑁 is 𝑙-connective. We can then find a projective module
𝑃 and a map 𝑃 [𝑙] → 𝑁 which is surjective on H𝑙. We may view the map 𝑃 [𝑙] → 𝑁 equivalently as a map
(𝑃 [𝑙] → 0) → (𝐿→ 𝑋) in the metabolic category. We claim that this map extends to a Lagrangian surgery
datum in the sense of Construction 1.1.151.1.15, for which it suffices to see that Ϙmet(𝑃 [𝑙] → 0) ≃ ΩϘ(𝑃 [𝑙]) is
(𝑛 + 1)-connective. By Lemma 1.2.101.2.10, the spectrum Ϙ(𝑃 [𝑙]) is then min(−2𝑙, 𝑚 − 𝑙)-connective and since
𝑙 < −𝑛−1−𝑏

2 we have that

min(−2𝑙, 𝑚 − 𝑙) > min
(

𝑛 + 1 + 𝑏, 2𝑚 + 𝑛 + 1 + 𝑏
2

)

≥ 𝑛 + 1

by the inequalities in our assumptions. We may therefore perform Lagrangian surgery along 𝑃 [𝑙] → 𝐿, see
Construction 1.1.151.1.15, to obtain a new Lagrangian 𝐿′ → 𝑋 such that the fibre 𝑁 ′ of the map 𝐿′ → 𝑋 fits in
a fibre sequence

𝑁 ′ ⟶ 𝑁∕𝑃 [𝑙] ⟶ D(𝑃 )[−𝑙 − 𝑛 − 1].
Since 2𝑙 < −𝑛−1−𝑏 and 𝑛+1+𝑏 is even, we have that −2𝑙−1 > 𝑛+1+𝑏 ≥ 𝑛+1. Thus −𝑙−𝑛−1 > 𝑙+1,
and so

H𝑙′ (𝑁 ′) = H𝑙′ (𝑁) = 0 for 𝑙′ < 𝑙 and H𝑙(𝑁 ′) ≅ coker[𝑃 → H𝑙(𝑁)] = 0,
which means that𝑁 ′ is (𝑙+1)-connective. Proceeding inductively we may thus obtain a Lagrangian 𝐿′′ →

𝑋 for which 𝑁 ′′, and thus 𝐿′′, is (−𝑛−1−𝑏2 )-connective.
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To see the final claim, we now recall that the diagonal defines a Lagrangian for (𝑋 ⊕𝑋, 𝑞 ⊕ (−𝑞)), and
so it follows from ii)ii) that the commutative monoid L𝑎,𝑏𝑛 (𝑅; Ϙ) is a group. The surjectivity and injectivity of
the homomorphism L𝑎,𝑏𝑛 (𝑅; Ϙ) → L𝑛(𝑅; Ϙ) then follow from i)i) and ii)ii), respectively. □

1.2.11. Remark. Under the assumptions of Proposition 1.2.61.2.6, the sequence

𝜋0M
𝑎,𝑏
𝑛 (𝑅, Ϙ) ⟶ 𝜋0Pn𝑎𝑛(𝑅, Ϙ) ⟶ L𝑎,𝑏𝑛 (𝑅; Ϙ)

is exact in the middle, just as in the case of ordinary L-groups; see Remark 1.1.101.1.10. Indeed if a Poincaré
object of Pn𝑎𝑛(𝑅, Ϙ) represents zero in L𝑎,𝑏𝑛 (𝑅; Ϙ), and therefore in L𝑛(𝑅; Ϙ), it admits a Lagrangian, and by
Part ii)ii) also a Lagrangian with the connectivity assumptions required to define an element of 𝜋0M

𝑎,𝑏
𝑛 (𝑅, Ϙ).

1.2.12. Corollary. If Ϙ is 𝑚-quadratic (e.g., Ϙ = Ϙ≥𝑚𝑀 ) then the natural map

Lq
𝑛(𝑅;𝑀) = L𝑛(𝑅; Ϙ

q
𝑀 ) ⟶ L𝑛(𝑅; Ϙ)

is an isomorphism for 𝑛 ≤ 2𝑚 − 3 and surjective for 𝑛 = 2𝑚 − 2.

Proof. Fix an 𝑛 ≤ 2𝑚 − 2 and let 𝑎 ∈ {0, 1} be such that 𝑛 + 𝑎 is even. Then 𝑎 ≥ 𝑛 − 2𝑚 and so by
Proposition 1.2.61.2.6 i)i) every class in either Lq

𝑛(𝑅;𝑀) or L𝑛(𝑅; Ϙ) can be represented by a Poincaré object
which is

(−𝑛−𝑎
2

)

-connective. To prove that the map L𝑛(𝑅; Ϙ
q
𝑀 ) ⟶ L𝑛(𝑅; Ϙ) is surjective in this range it

will then suffice to show that the monoid map
𝜋0Pn𝑎𝑛(𝑅, Ϙ

q
𝑀 ) ⟶ 𝜋0Pn𝑎𝑛(𝑅, Ϙ)

is surjective. Let𝑋 be (−𝑛−𝑎2 )-connective and equipped with a Poincaré form 𝑞 for Ϙ[−𝑛]. As Ϙ is𝑚- quadratic
and D𝑋 ≃ Σ𝑛𝑋 is ( 𝑛−𝑎2 )-connective the cofibre of the map Ϙq𝑀 (𝑋) → Ϙ(𝑋) is (𝑚 + 𝑛−𝑎

2 )-connective; see
Remark 1.1.31.1.3. Since 𝑚 + ( 𝑛−𝑎2 ) = 2𝑚+𝑛−𝑎

2 ≥ 𝑛 + 1 (where we note that 𝑎 = 0 when 𝑛 = 2𝑚 − 2) it follows
that the map Ϙq𝑀 (𝑋) → Ϙ(𝑋) is surjective on 𝜋𝑛, and so the surjectivity part of the statement is established.

To prove injectivity, let us now assume that 𝑛 ≤ 2𝑚− 3 and let 𝑏 ∈ {0, 1} be such that 𝑛+ 1+ 𝑏 is even.
Then 𝑏 ≥ 𝑛 − 2𝑚 + 1 and so by Proposition 1.2.61.2.6 ii)ii) every

(−𝑛−𝑎
2

)

-connective Poincaré object (𝑋, 𝑞) in
(Dp(𝑅), Ϙ[−𝑛]) which admits a Lagrangian, also admits a Lagrangian 𝐿 → 𝑋 such that 𝐿 and f ib[𝐿 → 𝑋]
are

(−𝑛−1−𝑏
2

)

-connective. Then D𝐿 ≃ Σ𝑛+1𝑁 is
( 𝑛+1−𝑏

2

)

-connective and so by Remark 1.1.31.1.3 and the
assumption that Ϙ is 𝑚-quadratic we deduce that the cofibre of the map Ϙq𝑀 (𝐿) → Ϙ(𝐿) is

( 2𝑚+𝑛+1−𝑏
2

)

-
connective. Since 𝑛 ≤ 2𝑚−3, we have 2𝑚+𝑛+1−𝑏

2 ≥ 𝑛+2 (where we note that 𝑏 = 0 when 𝑛 = 2𝑚−3) and
so the map

Ϙ
q
𝑀 (𝐿) ⟶ Ϙ(𝐿)

is bijective on 𝜋𝑛 and surjective on 𝜋𝑛+1. We conclude that 𝐿 can be refined to a Lagrangian of (𝑋, 𝑞) with
respect to Ϙq𝑀 and so the map L𝑛(𝑅; Ϙ

q
𝑀 ) ⟶ L𝑛(𝑅; Ϙ) is also injective (hence bijective) when 𝑛 ≤ 2𝑛 − 3,

as desired. □

1.2.13. Remark. The range in which the map of Corollary 1.2.121.2.12 is an isomorphism is essentially optimal.
For example for 𝑅 = ℤ and 𝑚 = 0, the map

ℤ∕2 ≅ Lq
−2(ℤ) ⟶ Lgs

−2(ℤ) = 0

is not an isomorphism, see Example 2.3.132.3.13 for the calculation of these groups.

1.2.14. Proposition. Let Ϙ a Poincaré structure on Dp(𝑅) and 𝑛 ∈ ℤ. Then for every 𝑎 ≥ 0 such that 𝑎+ 𝑛
is even the canonical map

L𝑎,𝑎𝑛 (𝑅; Ϙ) ⟶ L𝑎,𝑎+1𝑛 (𝑅; Ϙ)
is an isomorphism.

Proof. The map in question is clearly surjective, as both groups are generated by the same Poincaré objects.
To show injectivity, let us first consider (𝐿 → 𝑋) ∈ 𝜋0M

𝑎,𝑎+1
𝑛 (𝑅, Ϙ). We will show momentarily that then

𝑋 represents the trivial element of L𝑎,𝑎𝑛 (𝑅; Ϙ), and argue first how this statement implies the injectivity of
the map in question. So assume 𝑋 is an element in the kernel of the map L𝑎,𝑎𝑛 (𝑅; Ϙ) → L𝑎,𝑎+1𝑛 (𝑅; Ϙ). This
means that there exists an element (𝐿′ → 𝑋′) ∈ 𝜋0M

𝑎,𝑎+1
𝑛 (𝑅, Ϙ) such that 𝑋 ⊕ 𝑋′ is the boundary of
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further element (𝐿→ 𝑋⊕𝑋′) ∈ 𝜋0M
𝑎,𝑎+1
𝑛 (𝑅, Ϙ). Then𝑋′ as well as𝑋⊕𝑋′ represent the trivial element

of L𝑎,𝑎𝑛 (𝑅; Ϙ), and hence so does 𝑋.
To prove the remaining claim, consider again (𝐿→ 𝑋) ∈ 𝜋0M

𝑎,𝑎+1
𝑛 (𝑅, Ϙ). Let us write 𝑘 = −𝑛−𝑎

2 . Then,
by definition, 𝑋 is 𝑘-connective, and 𝐿 and 𝑁 = fib(𝐿 → 𝑋) are 𝑘 − 1-connective. By Remark 1.2.21.2.2, 𝐿
can be represented by a chain complex concentrated in degrees [𝑘−1, 𝑘+ 𝑎]. There is consequently a fibre
sequence

𝐿′′ ⟶ 𝐿⟶ 𝐿′

such that 𝐿′′ is a projective module 𝑃 concentrated in degree 𝑘−1 and 𝐿′ is 𝑘-connective. Let us consider
the diagram

𝐿′′ 𝐿′′

𝐿 𝑋

as a morphism (drawn vertically) in Met(Dp(𝑅); Ϙ) and recall that 𝐿→ 𝑋 is canonically a Poincaré object
in the metabolic category. Since Ϙmet(id𝐿′′ ) is contractible, we find that the above diagram canonically
refines to a surgery datum on 𝐿 → 𝑋. Tracing through the definition of algebraic surgery, the surgery
output is then a Lagrangian 𝐿′ → 𝑋′, with 𝑋′ still 𝑘-connected (since Ω𝑛D𝐿′′ is concentrated in degree
−𝑘 + 1 − 𝑛 ≥ 𝑘 + 1), and so (𝐿′ → 𝑋′) ∈ 𝜋0M

𝑎,𝑎
𝑛 (𝑅, Ϙ). We now analyse the Poincaré form 𝑞′ on 𝑋′. By

construction, (𝑋′, 𝑞′) is the output of surgery along the surgery datum𝐿′′ → 𝑋. We note that the composite
𝐿′′ → 𝐿→ 𝑋 is null homotopic since𝐿′′ = 𝑃 [𝑘−1] and𝑋 is 𝑘-connective. We deduce that the restriction
of 𝑞 along the map 𝐿′′ → 𝑋 is null homotopic in two ways, and therefore determines a loop in Ω𝑛Ϙ(𝐿′′).
The surgery datum 𝐿′′ → 𝑋 is then equivalent to the direct sum of the trivial surgery datum 0 → 𝑋 and the
surgery data 𝐿′′ → 0 determined by the above loop. Consequently, (𝑋′, 𝑞′) is the orthogonal sum of (𝑋, 𝑞)
with the output 𝑍 of surgery on 𝐿′′ → 0. Being a summand of 𝑋′ we find that 𝑍 is also 𝑘-connective,
and moreover by construction Ω𝑛+1D𝐿′′ is a Lagrangian in 𝑍. Since Ω𝑛+1D𝐿′′ = (D𝑃 )[−𝑛 − 𝑘] is also
𝑘-connective (since −𝑘 − 𝑛 ≥ 𝑘 by definition of 𝑘), we see that Ω𝑛+1D𝐿′′ → 𝑍 belongs to M

𝑎,𝑎
𝑛 (𝑅, Ϙ).

Therefore we deduce that [𝑋, 𝑞] = [𝑋′, 𝑞′] = 0 ∈ L𝑎,𝑎𝑛 (𝑅; Ϙ) as claimed. □

1.2.15. Proposition. Let Ϙ be a 0-quadratic Poincaré structure on Dp(𝑅). Then the canonical map

W(Proj(𝑅); Ϙ) ⟶ L0(𝑅; Ϙ)

is an isomorphism.

Proof. First we recall from Remark 1.2.41.2.4 that W(Proj(𝑅); Ϙ) ≅ L0,0
0 (𝑅; Ϙ). Under this isomorphism, the

map under consideration factors as

L0,0
0 (𝑅; Ϙ) → L0,1

0 (𝑅; Ϙ) → L0(𝑅; Ϙ).

The first map is an isomorphism by Proposition 1.2.141.2.14 and the second map is an isomorphism by Proposi-
tion 1.2.61.2.6 since Ϙ is 0-quadratic. □

1.2.16. Corollary.
i) Lgs

0 (𝑅;𝑀) is naturally isomorphic to the Witt group of 𝑀-valued symmetric forms over 𝑅.
ii) Lge

0 (𝑅;𝑀) is naturally isomorphic to the Witt group of 𝑀-valued even forms over 𝑅.
iii) L0(𝑅; Ϙ

≥𝑚
𝑀 ) is naturally isomorphic to the Witt group of 𝑀-valued quadratic forms over 𝑅 for every

𝑚 ≥ 2.

Proof. For L0(𝑅; Ϙ
≥𝑚
𝑀 ) with 𝑚 = 0, 1, 2 we simply apply Proposition 1.2.151.2.15 and invoke the explicit descrip-

tion of Ϙ≥𝑚𝑀 (𝑃 [0]) for 𝑚 = 0, 1, 2 in terms of symmetric, even and quadratic forms, respectively. The case
of L0(𝑅; Ϙ

≥𝑚
𝑀 ) for 𝑚 > 2 reduces to that of 𝑚 = 2 since the natural map

Lq
0(𝑅;𝑀) ⟶ L0(𝑅; Ϙ

≥𝑚
𝑀 )

is an isomorphism for 𝑚 ≥ 2 by Corollary 1.2.121.2.12. □
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1.2.17. Remark. Combining Corollary 1.2.161.2.16 and the equivalences Lgs
−2𝑘(𝑅;𝑀((−1)𝑘)) ≅ L0

(

𝑅; Ϙ≥𝑘𝑀
)

given by Corollary R.10R.10 we obtain a description of all the even non-positive genuine symmetric L-groups of
𝑅 in terms of Witt groups of symmetric, even or quadratic forms, see Theorem 1.2.221.2.22. A similar description
can be obtained for the corresponding odd L-groups of degrees ≤ 1 in terms of symmetric (in degree 1),
even (in degree −1) and quadratic (in odd degrees ≤ −3) formations. We leave the details to the motivated
reader.

1.2.18. Remark. When 𝑀 is free as an 𝑅-module, the results of this section apply equally well if we
restrict attention to the full subcategory Df (𝑅) ⊆ Dp(𝑅) of finite free complexes. Indeed, in the proof of
Proposition 1.2.61.2.6 we may simply choose 𝑃 to be free, in which case the algebraic surgery procedure stays
within Df (𝑅). In addition, the connectivity bounds obtained by that proposition translate into the same type
of representation by complexes concentrated in certain intervals, only that now these complexes consist of
stably free modules, see Remark 1.1.81.1.8. For example, if Ϙ is a 0-quadratic Poincaré structure then any element
of L𝑛(Df (𝑅), Ϙ) with 𝑛 ≥ 0 can be represented by a Poincaré form on a complex of stable free 𝑅-modules
concentrated in degrees [−𝑛, 0], and such a Poincaré complex represents zero if and only if it admits a
Lagrangian represented by a complex of stable free modules concentrated in degrees [−𝑛−1, 0]. Similarly,
the proof of Proposition 1.2.151.2.15 can be run verbatim with stably free modules instead of projective modules,
and so we get that in the situation of that proposition, L0(Df (𝑅), Ϙ) is isomorphic to the corresponding
Witt groups of stably free Poincaré objects. More generally, one can take any intermediate subcategory
Df (𝑅) ⊆ C ⊆ Dp(𝑅) which is closed under the duality. A typical such C is the full subcategory of objects
whose class in K0(𝑅) lies in a given involution-closed subgroup of K0(𝑅). We will consider this framework
again in §22 when we will discuss control on GW and L spectra.

Genuine symmetric L-theory. In this subsection, we use the previous surgery results to identify the genuine
symmetric L-groups

Lgs
𝑛 (𝑅;𝑀) ∶= L𝑛(𝑅; Ϙ

gs
𝑀 )

with Ranicki’s original definition of symmetric L-groups, which we recall now.
We let Chb(Proj(𝑅)) be the category of bounded chain complexes of finitely generated projective 𝑅-

modules. We will say that 𝐶 ∈ Chb(Proj(𝑅)) is 𝑛-dimensional if it is concentrated in the range [0, 𝑛], that
is, if 𝐶𝑖 = 0 whenever 𝑖 < 0 or 𝑖 > 𝑛. Recall that the ∞-category Dp(𝑅) of perfect left 𝑅-modules can
be identified with the ∞-categorical localisation Chb(Proj(𝑅))[𝑊 −1] of Chb(Proj(𝑅)) with respect to the
collection 𝑊 of quasi-isomorphisms.

1.2.19. Definition. We let 𝑛 ≥ 0 be a non-negative integer. An 𝑛-dimensional Poincaré complex in the
sense of [Ran80Ran80, §1] is a pair (𝐶, 𝑞) where 𝐶 ∈ Chb(Proj(𝑅)) is an 𝑛-dimensional complex and 𝑞 is an
element of H𝑛(H𝑜𝑚𝑅(D𝐶,𝐶)hC2 ) whose image in H𝑛(H𝑜𝑚𝑅(D𝐶,𝐶)) = [D(𝐶)[𝑛], 𝐶] is an isomorphism
D(𝐶)[𝑛]→𝐶 in the homotopy category of Chb(Proj(𝑅)). Here, H𝑜𝑚𝑅(−,−) denotes the internal Hom
complex and (−)hC2 is the homotopy fixed point construction (described explicitly in [Ran80Ran80] using the
standard projective resolution of ℤ as a trivial 𝐶2-module). An (𝑛+ 1)-dimensional Poincaré pair is a pair
(𝑓, 𝜂)where 𝑓 ∶ 𝐶 → 𝐶 ′ is a map inChb(Proj(𝑅)) from an 𝑛-dimensional complex to an (𝑛+1)-dimensional
complex and 𝜂 is an element of

H𝑛(f ib[H𝑜𝑚𝑅(D𝐶,𝐶) → H𝑜𝑚𝑅(D𝐶 ′, 𝐶 ′)]hC2 )

whose respective images in [D(𝐶)[𝑛], 𝐶] and [cof(D𝐶 ′ → D𝐶)[𝑛], 𝐶 ′] are isomorphisms in the homotopy
category. Every Poincaré pair (𝐶 → 𝐶 ′, 𝜂) determines, in particular, a Poincaré complex (𝐶, 𝜂|𝐶 ), and we
say that a Poincaré complex is null-cobordant if it is obtained in this way. Similarly, two 𝑛-dimensional
Poincaré complexes (𝐶, 𝑞), (𝐶 ′, 𝑞′) are said to be cobordant if (𝐶 ⊕𝐶 ′, 𝑞 ⊕−𝑞′) is null-cobordant. The set
of equivalence classes of 𝑛-dimensional Poincaré complexes modulo the cobordism relation above forms
an abelian group Lshort

𝑛 (𝑅;𝑀) under direct sum, with the inverse of (𝐶, 𝑞) given by (𝐶,−𝑞). We will refer
to these groups as the short symmetric L-groups of 𝑅.

1.2.20. Remark.
i) The groups Lshort

𝑛 (𝑅;𝑀) are formally defined in [Ran80Ran80] only when 𝑀 is of the form 𝑅(𝜖) for some
𝜖-involution on 𝑅. However, the definition only makes use of the induced duality on chain complexes
and it therefore makes sense for any invertible ℤ-module 𝑀 with involution.
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ii) In [Ran80Ran80] Ranicki extends the definition of the classical symmetric L-groups to negative integers as
follows:

Lshort
𝑛 (𝑅;𝑀) =

{

Lshort,ev
𝑛+2 (𝑅; −𝑀) for 𝑛 = −2,−1

Lq
𝑛(𝑅;𝑀) for 𝑛 ≤ −3

HereLshort,ev
𝑛 (𝑅;𝑀) are the even L-groups from [Ran80Ran80, §3]. We recall that an 𝑛-dimensional Poincaré

complex (𝐶,𝜑) is called even in [Ran80Ran80] if a certain Wu class 𝑣0(𝜙)∶ H𝑛(𝐶) → Ĥ0(C2;𝑀) vanishes.
Likewise, an (𝑛 + 1)-dimensional Poincaré pair 𝑓 ∶ 𝐶 → 𝐶 ′ is called even if its relative Wu class
H𝑛+1(𝑓 ) → Ĥ0(C2;𝑀) vanishes. The short even L-groups Lshort,ev

𝑛 (𝑅;𝑀) are then the cobordism
groups of 𝑛-dimensional even complexes. For 𝑛 ≥ 0 we will also show that they are equivalent to our
genuine even L-groups, see the proof of Theorem 1.2.221.2.22.

1.2.21. Remark. Two Poincaré complexes (𝐶, 𝑞), (𝐶 ′, 𝑞′) are said to be quasi-isomorphic if there exists a
quasi-isomorphism 𝑓 ∶ 𝐶 → 𝐶 ′ such that 𝑓∗𝑞 = 𝑞′. This yields an equivalence relation which is finer
than cobordism: Given a quasi-isomorphism 𝑓 ∶ (𝐶, 𝑞) → (𝐶 ′, 𝑞′) one can construct a Poincaré pair of
the form (id, 𝑓 )∶ 𝐶 → 𝐶 ⊕ 𝐶 ′ witnessing (𝐶, 𝑞) and (𝐶 ′, 𝑞′) as cobordant. In particular, if Pnshort𝑛 (𝑅)
denotes the monoid of quasi-isomorphism classes of 𝑛-dimensional Poincaré complexes and Mshort

𝑛 (𝑅)
the monoid of 𝑛-dimensional Poincaré pairs, then Lshort

𝑛 (𝑅;𝑀) is naturally isomorphic to the cokernel of
Mshort
𝑛 (𝑅) → Pnshort𝑛 (𝑅) in the category of commutative monoids.

The remainder of this subsection is devoted to a proof of the following theorem.

1.2.22. Theorem. Let 𝑅 be a ring and 𝑀 an invertible ℤ-module with involution over 𝑅. Then for all
integers 𝑛, there is a natural isomorphism

Lshort
𝑛 (𝑅;𝑀) ≅ Lgs

𝑛 (𝑅;𝑀)

between Ranicki’s classical symmetric L-groups and the genuine symmetric L-groups.

The proof will proceed in several steps. We first compare, for 𝑛 ≥ 0, Ranicki’s classical L-group
Lshort
𝑛 (𝑅;𝑀) to the group L𝑛,𝑛+1𝑛 (𝑅; Ϙs𝑀 ) of Definition 1.2.11.2.1 as follows. Let I𝑛 ⊆ Chb(Proj(𝑅)) be the

subcategory consisting of the 𝑛-dimensional complexes and quasi-isomorphisms between them, and let
J[0,𝑛] ⊆ Dp(𝑅)≃ be the full sub-∞-groupoid spanned by those perfect𝑅-modules which can be represented
by a complex in Proj(𝑅) concentrated in degrees [0, 𝑛]. The canonical localisation map then restricts to a
functor 𝜋 ∶ I𝑛 → J[0,𝑛], and it induces isomorphisms

𝜌∶ H𝑛(H𝑜𝑚𝑅(D(𝐶), 𝐶)hC2 )
≅

⟶ 𝜋𝑛(hom𝑅(D(𝜋𝐶), 𝜋𝐶)hC2 ) ≅ 𝜋0Ω𝑛Ϙs𝑀 (𝜋D𝐶)

natural in the object 𝐶 of I𝑛. We can then define a map of sets

Pnshort𝑛 (𝑅) ⟶ 𝜋0Pn𝑛𝑛(𝑅; Ϙ
s
𝑀 )

by sending an 𝑛-dimensional Poincaré complex (𝐶, 𝑞) to the component determined by (𝜋(D𝐶), 𝜌(𝑞)). This
map is in fact an isomorphism, since the functor 𝜋 ∶ I𝑛 → J[0,𝑛] is an equivalence on homotopy categories,
and 𝜌 is an isomorphism. Since the localisation functor Chb(𝑅) → Dp(𝑅) preserves direct sums this is
moreover an isomorphism of monoids.

1.2.23. Proposition. For every 𝑛 ≥ 0, the previously defined map induces a group isomorphism

Lshort
𝑛 (𝑅;𝑀) ≅ L𝑛,𝑛+1𝑛 (𝑅; Ϙs𝑀 ).

Proof. By replacing Chb(𝑅) and Dp(𝑅) by their arrow categories a similar construction provides a mor-
phism of monoids

Mshort
𝑛 (𝑅) ⟶ 𝜋0M

𝑛,𝑛+1
𝑛 (𝑅; Ϙs𝑀 )

which is compatible with the morphism Pnshort𝑛 (𝑅) → 𝜋0Pn𝑛𝑛(𝑅; Ϙ
s
𝑀 ). Thus we obtain a well-defined group

homomorphism on L-groups. Since every arrow in Dp(𝑅) can be lifted to a map of chain complexes,
an argument similar to the one above shows that this map is also surjective. This suffices to induce an
isomorphism on quotients. □



22 CALMÈS, DOTTO, HARPAZ, HEBESTREIT, LAND, MOI, NARDIN, NIKOLAUS, AND STEIMLE

The next step for the proof of Theorem 1.2.221.2.22 is to see that on 𝑛-dimensional complexes, the datum of a
symmetric form is the same as the datum of a genuine symmetric form. We record here the corresponding
statement for L-groups, For the following result, we keep in mind that Ϙgs𝑀 is 2-symmetric:

1.2.24. Lemma. Let Ϙ be 𝑟-symmetric for 𝑟 ∈ ℤ. Let 𝑎, 𝑏, 𝑛 ∈ ℤ be as in Definition 1.2.11.2.1, and suppose
additionally that 𝑎 ≤ 𝑛 + 2𝑟 − 4 and 𝑏 ≤ 𝑛 + 2𝑟 − 3. Then the map L𝑎,𝑏𝑛 (𝑅; Ϙ) → L𝑎,𝑏𝑛 (𝑅; Ϙs𝑀 ) is an
isomorphism. In particular, the map

L𝑛,𝑛+1𝑛 (𝑅; Ϙgs𝑀 ) ⟶ L𝑛,𝑛+1𝑛 (𝑅; Ϙs𝑀 )

is an isomorphism for every 𝑛 ≥ 0.

Proof. It will suffice to show that the monoid homomorphisms
𝜋0Pn𝑎𝑛(𝑅; Ϙ) → 𝜋0Pn𝑎𝑛(𝑅; Ϙ

s
𝑀 ) and 𝜋0M

𝑎,𝑏
𝑛 (𝑅; Ϙ) → 𝜋0M

𝑎,𝑏
𝑛 (𝑅; Ϙs𝑀 )

are isomorphisms. Now the left homomorphism is an isomorphism since Ϙ is 𝑟-symmetric and so the map
Ω∞+𝑛

Ϙ(𝑋) → Ω∞+𝑛
Ϙ
s
𝑀 (𝑋) is an equivalence by Remark 1.1.31.1.3 whenever 𝑋 is

(

−𝑛−𝑎
2

)

-connective, taking

into account that −𝑟− −𝑛−𝑎
2 = −2𝑟+𝑛+𝑎

2 ≤ 𝑛−2 by our assumption. Concerning the right map, it will suffice

to show that whenever 𝐿→ 𝑋 is such that 𝐿 is ⌈−𝑛−1−𝑏2 ⌉-connective and𝑋 is
(

−𝑛−𝑎
2

)

-connective the map

ϘMet(𝐿→ 𝑋) = f ib[Ϙ(𝑋) → Ϙ(𝐿)] → f ib[Ϙs𝑀 (𝑋) → Ϙs𝑀 (𝐿)] = ϘsMet(𝐿→ 𝑋)

has an (𝑛 − 2)-truncated fibre. Equivalently, this is the same as saying that the square

Ϙ(𝑋) Ϙ
s
𝑀 (𝑋)

Ϙ(𝐿) Ϙ
s
𝑀 (𝐿)

has (𝑛 − 2)-truncated total fibre. As in the first part of the proof, we find that the top horizontal map is
(𝑛 − 2)-truncated and the bottom horizontal map is (𝑛 − 1)-truncated since 𝐿 is ⌈−𝑛−1−𝑏2 ⌉-connective and
−𝑟 − ⌈

−𝑛−1−𝑏
2 ⌉ ≤ −2𝑟+𝑛+1+𝑏

2 ≤ 𝑛 − 1. □

Proof of Theorem 1.2.221.2.22. First, we consider the case 𝑛 ≥ 0 where we simply combine the isomorphisms

Lshort
𝑛 (𝑅;𝑀) ≅ L𝑛,𝑛+1𝑛 (𝑅; Ϙs𝑀 ) ≅ L𝑛,𝑛+1𝑛 (𝑅; Ϙgs𝑀 ) ≅ L𝑛(𝑅; Ϙ

gs
𝑀 )

of Proposition 1.2.231.2.23, Lemma 1.2.241.2.24 and Corollary 1.2.91.2.9, respectively.
The case 𝑛 ≤ −3 is covered by Corollary 1.2.121.2.12. It then suffices to treat the case 𝑛 = −2,−1. Here, we

use the “periodicity”
Lgs
𝑛 (𝑅;𝑀) ≅ Lge

𝑛+2(𝑅; −𝑀)

of Corollary R.10R.10 and will now argue more generally that for 𝑛 ≥ 0, a canonical map Lshort,ev
𝑛 (𝑅;𝑀) →

Lge
𝑛 (𝑅;𝑀) is an isomorphism. To construct the map, we consider an 𝑛-dimensional even complex (𝐶,𝜑)

and obtain from the construction preceding Proposition 1.2.231.2.23 a canonical element (𝑋, 𝑞) of L𝑛,𝑛+1𝑛 (𝑅; Ϙgs𝑀 ),
represented by D𝐶 . We want to argue that (𝑋, 𝑞) refines to an element of L𝑛,𝑛+1𝑛 (𝑅; Ϙge𝑀 ). Let us consider
the fibre sequence

Ω𝑛Ϙge(𝑋) ⟶ Ω𝑛Ϙgs(𝑋) ⟶ hom𝑅(𝑋; Ĥ0(C2;𝑀)[−𝑛]).
We note the equivalence Ω∞ hom𝑅(𝑋; Ĥ0(C2;𝑀)[−𝑛]) ≃ Hom𝑅(H−𝑛(𝑋), Ĥ0(C2;𝑀)). Tracing through
the definitions, the symmetric structure 𝑞 is sent to the Wu class 𝑣0(𝜑) which is zero by assumption. We
deduce that (𝑋, 𝑞) canonically refines to an element of L𝑛,𝑛+1𝑛 (𝑅; Ϙge𝑀 ). Likewise, an (𝑛 + 1)-dimensional
even pair gives rise to a genuine even structure on the associated cobordism. Reversing the above argument,
we deduce that the map

Lshort,ev
𝑛 (𝑅;𝑀) ⟶ L𝑛,𝑛+1𝑛 (𝑅; Ϙge𝑀 )

is an isomorphism. Combining this with the isomorphism

L𝑛,𝑛+1𝑛 (𝑅; Ϙge𝑀 ) ⟶ L𝑛(𝑅; Ϙ
ge
𝑀 )

obtained from Proposition 1.2.61.2.6 just as Corollary 1.2.91.2.9, the theorem follows. □
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1.2.25. Remark. In [Ran80Ran80] Ranicki also defines, for 𝑛 ≥ 0, the 𝑛’th quadratic L-group, using quadratic
Poincaré complexes of dimension 𝑛. The same argument as above shows that this group coincides with
L𝑛,𝑛+1𝑛 (𝑅; Ϙq𝑀 ), and hence with L𝑛(𝑅; Ϙ

q
𝑀 ) by Proposition 1.2.61.2.6. As shown in [Ran80Ran80], these are also the

same as the quadratic L-groups of Wall [Wal99Wal99], which arise in manifold theory as the natural recipient
of surgery obstructions. We warn the reader that these groups do not agree with L𝑛(𝑅; Ϙ

gq
𝑀 ), which by

periodicity are isomorphic to L𝑛−4(𝑅; Ϙ
gs
𝑀 ).

Surgery for connective ring spectra. In this section we apply the surgery arguments previously developed
to the case where 𝑅 is replaced with a connective ring spectrum 𝐴 (that is, a connective E1-algebra in the
monoidal ∞-category of spectra). The symbol ⊗ here consequently refers to the tensor product over the
sphere spectrum. The perfect derived category Dp(𝑅) is then replaced with the stable ∞-category Mod𝜔𝐴
of compact 𝐴-module spectra. We call a compact 𝐴-module projective if it is a retract of 𝐴𝑛 for some 𝑛,
and write Proj(𝐴) ⊆ Mod𝜔𝐴 for the full subcategory spanned by the projective 𝐴-modules. We now fix
for the remainder of this section a Poincaré structure on Mod𝜔𝐴. The duality D underlying Ϙ on Mod𝜔𝐴 is
then induced by an invertible module with involution 𝑀 as in Definition [II].3.1.13.1.1, which we assume to be
projective in either of its two 𝐴-module structures, so that D preserves Proj(𝐴). We refer to §[II].33 for a
complete treatment of Poincaré structures on categories of module spectra.

As in Definition 1.1.21.1.2, we say that Ϙ is 𝑚-quadratic if the cofibre of the map
Ϙ
q
𝑀 (𝑋) = hom𝐴⊗𝐴(𝑋 ⊗𝑋,𝑀)hC2

⟶ Ϙ(𝑋)

sends 𝐴, or equivalently the full subcategory Proj(𝐴) ⊆ Mod𝜔𝐴, to 𝑚-connective spectra. For 𝑘 ∈ ℤ we
say that an 𝐴-module 𝑋 is 𝑘-connective if its underlying spectrum is 𝑘-connective, that is, has vanishing
homotopy groups in degrees < 𝑘. With this notion of connectivity, the definition of L𝑎,𝑏𝑛 (𝐴; Ϙ) from 1.2.11.2.1
carries over verbatim to this more general situation. Proposition 1.2.61.2.6 does as well:
1.2.26. Proposition (Surgery for connective ring spectra). Suppose that Ϙ is𝑚-quadratic. Fix an 𝑛 ∈ ℤ and
let 𝑎, 𝑏 ≥ 0 be two non-negative integers with 𝑏 ≥ 𝑎 − 1, and such that 𝑛 + 𝑎 and 𝑛 + 1 + 𝑏 are even.

i) If 𝑎 ≥ 𝑛−2𝑚 then any Poincaré object in (Mod𝜔𝐴, Ϙ
[−𝑛]) is cobordant to one which is

(−𝑛−𝑎
2

)

-connective.
ii) If 𝑏 ≥ 𝑛 − 2𝑚 + 1 then any Lagrangian 𝐿 → 𝑋 of a

(−𝑛−𝑎
2

)

-connective Poincaré object (𝑋, 𝑞) ∈
Pn(Mod𝜔𝐴, Ϙ

[−𝑛]) is cobordant relative to 𝑋 to a Lagrangian 𝐿′ → 𝑋 such that both 𝐿′ and f ib[𝐿′ →

𝑋] are
(−𝑛−1−𝑏

2

)

-connective.

In particular, if both inequalities of i)i) and ii)ii) hold, the monoid L𝑎,𝑏𝑛 (𝐴; Ϙ) is a group and the canonical map
L𝑎,𝑏𝑛 (𝐴; Ϙ) → L𝑛(𝐴; Ϙ) is an isomorphism.

The proof of Proposition 1.2.261.2.26 will use the following standard fact.
1.2.27. Lemma. Let𝑋 be a compact connective𝐴-module. Then 𝜋0𝑋 is finitely presented as a 𝜋0𝐴-module.
In particular, there exists a map 𝐴𝑛 → 𝑋 whose cofibre is 1-connective.
Proof. We note that 𝜋0(𝐴)⊗𝐴𝑋 is a connective and perfect 𝜋0(𝐴)-module with 𝜋0(𝜋0(𝐴)⊗𝐴𝑋) ≅ 𝜋0(𝑋).
We may therefore assume that𝐴 is discrete, in which case it follows from the fact that connective and perfect
modules over a discrete ring can be represented by finite chain complexes of finitely generated projective
𝐴-modules concentrated in non-negative degrees, see also Lemma 1.1.61.1.6. □

Proof of Proposition 1.2.261.2.26. We first note that the statement of Lemma 1.2.101.2.10, which is used in the proof
of Proposition 1.2.61.2.6, holds in the present setting with the exact same proof, where 𝑃 [𝑘] is understood as the
𝑘-fold suspension Σ𝑘𝑃 ∈ Mod𝜔𝐴 of a projective𝐴-module 𝑃 . All the other results referred to in the proof of
Proposition 1.2.61.2.6 are formulated for a general Poincaré ∞-category except for Lemma 1.1.61.1.6, which is used
solely for the following purpose: to show that if 𝑋 is 𝑘-connective then there exists a projective module 𝑃
and a map 𝑃 [𝑘] → 𝑋 whose cofibre is (𝑘 + 1)-connective. This last statement holds in the present setting
as well (taking again 𝑃 [𝑘] to mean the 𝑘-fold suspension of 𝑃 ) by Lemma 1.2.271.2.27. Having taken care of all
these preliminaries, the proof of Proposition 1.2.261.2.26 now proceeds verbatim as that of Proposition 1.2.61.2.6. □

1.2.28. Remark. Using Remark 1.1.61.1.6 we observed in Remark 1.2.21.2.2 that Poincaré objects satisfying the
connectivity requirements for L𝑎,𝑏𝑛 (𝐴; Ϙ) are actually representable by complexes concentrated in certain
degrees, and similarly for Lagrangians. We may recognize some aspects of this behaviour in the present
more general setting:
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i) If𝑋 ∈ Mod𝜔𝐴 is projective then so isD𝑋, and in particular both𝑋 andD𝑋 are connective. Conversely,
if both 𝑋 and D𝑋 are connective then 𝑋 is projective. To see this, let

𝐴𝑛 → 𝑋
𝑓
←←←←←←←→ 𝑌

be a fibre sequence such that 𝑌 1-connective (such a sequence exists by Lemma 1.2.271.2.27). Now the
condition that 𝑀 is an invertible 𝐴⊗𝕊 𝐴-module implies that hom𝐴(𝑋, 𝑌 ) ≃ hom𝐴(𝑀,𝑌 )⊗𝐴 D𝑋,
where we consider hom𝐴(𝑀,𝑌 ) as a right 𝐴-module via pre-composition by the second 𝐴-action on
𝑀 . Since D𝑋 is connective and 𝑌 is 1-connective we conclude that hom𝐴(𝑋, 𝑌 ) is 1-connective, and
hence the map 𝑓 is null-homotopic. It follows that the map 𝐴𝑛 → 𝑋 admits a section up to homotopy,
so that 𝑋 is a retract of 𝐴𝑛. More generally, if 𝑋 is 𝑘-connective and D𝑋 is (−𝑘)-connective then 𝑋
is the 𝑘-fold suspension of a projective module, and vice versa.

ii) If 𝑋 is connective and D(𝑋) is (−1)-connective then 𝑋 might fail to be projective, but only mildly
so: in this case, we can write 𝑋 as a cofibre of a map 𝑃 → 𝑄 between two projective 𝐴-module
spectra. If we compare with the situation of perfect derived categories of discrete rings, this property
corresponds to being a representable by a complex of projectives concentrated in degrees [0, 1]. To
see that this holds in our setting let us again consider a fibre sequence as above with 𝑌 1-connective.
Then 𝑃 ∶= Ω𝑌 is connective and D𝑀𝑃 is the cofibre of the dual map D𝑀𝑋 → D𝑀𝐴𝑛 =𝑀𝑛 and is
hence connective. It then follows by the previous point that 𝑃 is projective, and so 𝑋 is the cofibre of
a map 𝑃 → 𝐴𝑛 between projective modules, as claimed. More generally, if𝑋 is 𝑘-connective and D𝑋
is (−𝑘− 1)-connective then 𝑋 is the 𝑘-fold suspension of the cofibre of a map of projective modules,
and vice versa.

We spell out these two points since we will make use of them just below, but let us point out that these
are just two steps in an exhaustive filtration on connective 𝐴-module spectra obtained by requiring weaker
and weaker connectivity conditions on the duals (or more generally, a bi-indexed filtration on all of Mod𝜔𝐴).
This can be conveniently axiomatised in the framework of weight structures, see [HS21HS21, §3] for a treatment
in the setting of Poincaré ∞-categories.

Using surgery methods we now obtain the following result, see also [Lur11Lur11, Lecture 14] for a proof of
the algebraic 𝜋-𝜋-theorem, Corollary 1.2.331.2.33i)i) below. We say that a map of spectra is 𝑘-connective for some
𝑘 ∈ ℤ if its fibre is. As in Paper [II] and Paper [IIII], we write Λ

Ϙ
for the linear part of a quadratic functor Ϙ.

1.2.29. Proposition. Fox𝑚, 𝑝 ∈ ℤ. Let 𝑓 ∶ 𝐴 → 𝐵 be a 1-connective map of connective ring spectra,𝑀,𝑁
projective invertible modules with involution over𝐴,𝐵 respectively, and Ϙ𝑀 and Ϙ𝑁 Poincaré structures on
Mod𝜔𝐴 and Mod𝜔𝐵 which are 𝑚-quadratic with respect to𝑀,𝑁 , respectively. Suppose given a refinement of
the extension of scalars functor 𝑓! to a Poincaré functor (Mod𝜔𝐴, Ϙ𝑀 ) → (Mod𝜔𝐵 , Ϙ𝑁 ) such that the induced
map 𝑀 = B

Ϙ𝑀
(𝐴,𝐴) → B

Ϙ𝑁
(𝐵,𝐵) = 𝑁 is 1-connective and the induced map Λ

Ϙ𝑀
(𝐴) → Λ

Ϙ𝑁
(𝐵) is

𝑝-connective. Then the map

(6) L𝑛(𝐴; Ϙ𝑀 ) ⟶ L𝑛(𝐵; Ϙ𝑁 )

is an isomorphism for 𝑛 ≤ min(2𝑝 − 1, 2𝑚) and surjective for 𝑛 = min(2𝑝, 2𝑚 + 1).

Taking 𝑓 to be the identity of 𝐴 and Ϙ𝑀 to be Ϙq𝑀 , we recover a generalisation of Corollary 1.2.121.2.12 to the
present setting:

1.2.30. Corollary. Let Ϙ𝑀 be a Poincaré structure on Mod𝜔𝐴 which is 𝑚-quadratic with respect to a projec-
tive invertible module with involution 𝑀 . Then the canonical map

Lq
𝑛(𝐴;𝑀) = L𝑛(𝐴; Ϙ

q
𝑀 ) ⟶ L𝑛(𝐴; Ϙ𝑀 )

is an isomorphism for 𝑛 ≤ 2𝑚 − 3 and surjective for 𝑛 = 2𝑚 − 2.

1.2.31. Example. Corollary 1.2.301.2.30 can be applied for the universal Poincaré structure Ϙu on Mod𝜔𝕊 from
Example [II].1.2.151.2.15 which is 0-quadratic as its linear part is given by hom(−,𝕊), to obtain that Lq

𝑛(𝕊) →
Lu
𝑛(𝕊) is an equivalence in degrees ≤ −3. Interestingly, since 𝕊tC2 ≃ 𝕊∧

2 is connective by Lin’s Theorem
[Lin80Lin80], the symmetric Poincaré structure Ϙs on Mod𝜔𝕊 is also 0-quadratic. Thus, the map Lq

𝑛(𝕊) → Ls
𝑛(𝕊)

is also an isomorphism for 𝑛 ≤ −3. Both of these observations also follow from work of Weiss-Williams
[WW14WW14] who give an explicit formula for the cofibre of the maps in question.
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1.2.32. Remark. In the proof of Proposition 1.2.291.2.29, we will frequently make use of the following fact
[Lur17Lur17, Corollary 7.2.2.19]. Namely, for a map 𝑓 ∶ 𝐴 → 𝐵 between connective ring spectra which in-
duces an isomorphism on 𝜋0, in particular for 1-connective 𝑓 as in Proposition 1.2.291.2.29, the extension of
scalars functor 𝑓! ∶ Proj(𝐴) → Proj(𝐵) induces an equivalence on homotopy categories. In particular, we
can lift (uniquely up to homotopy) projective 𝐵-modules and maps between such to projective 𝐴-modules
and maps between such. Consequently, we can also lift perfect 𝐵-modules presented as (co)fibres of maps
between projective 𝐵-modules to perfect 𝐴-modules of the same kind.

Proof of Proposition 1.2.291.2.29. First, we show that for an 𝐴-module spectrum 𝑋 ∈ Mod𝜔𝐴 such that D𝑋 is
𝑟-connective the map Ϙ𝑀 (𝑋) → Ϙ𝑁 (𝑓!𝑋) is min(2𝑟 + 1, 𝑟 + 𝑝)-connective. To see this, let us consider the
diagram of horizontal cofibre sequences

Ϙ
q
𝑀 (𝑋) Ϙ𝑀 (𝑋) Λ

Ϙ𝑀
(𝑋)[𝑟]

Ϙ
q
𝑁 (𝑓!𝑋) Ϙ𝑁 (𝑓!𝑋) Λ

Ϙ𝑁
(𝑓!𝑋)[𝑟].

Then the connectivity assumptions on the maps induced on bilinear and linear parts imply that the left
vertical map is (2𝑟 + 1)-connective and that the right vertical map is (𝑟 + 𝑝)-connective, respectively, and
so the claim follows. In particular, the map Ϙ𝑀 (𝑋) → Ϙ𝑁 (𝑓!𝑋) is (2𝑟+1)-connective when 𝑟 ≤ 𝑝−1, and
2𝑟-connective when 𝑟 = 𝑝.

Let us now fix an 𝑛 ≤ min(2𝑝, 2𝑚 + 1) and let 𝑎 ∈ {0, 1} be such that 𝑛 + 𝑎 is even. Then 𝑎 ≥ 𝑛 − 2𝑚
(where we note that if 𝑛 = 2𝑚+1 then 𝑎 = 1) and so by Proposition 1.2.261.2.26 i)i) every class in either L𝑛(𝐴; Ϙ𝑀 )
or L𝑛(𝐵; Ϙ𝑁 ) can be represented by a Poincaré object which is

(−𝑛−𝑎
2

)

-connective. To prove the surjectivity
part of the statement it will then suffice to show that the monoid map

𝜋0Pn𝑎𝑛(𝐴, Ϙ𝑀 ) ⟶ 𝜋0Pn𝑎𝑛(𝐵, Ϙ𝑁 )

is surjective. Now by Remark 1.2.281.2.28 we have that if 𝑋 ∈ Mod𝜔𝐵 is a (−𝑛−𝑎2 )-connective 𝐵-module such
that D𝑋 is

( 𝑛−𝑎
2

)

-connective, then the
( 𝑛−𝑎

2

)

-fold suspension of 𝑋 is a projective module if 𝑎 = 0 and
the fibre of a map between projective modules if 𝑎 = 1. By Remark 1.2.321.2.32 such 𝐵-modules can be lifted
to 𝐴-modules of the same type, and so it will suffice to prove that for every (−𝑛−𝑎2 )-connective 𝐴-module
𝑋 ∈ Mod𝜔𝐴 the map

Ϙ𝑀 (𝑋) ⟶ Ϙ𝑁 (𝑓!𝑋)
is surjective on 𝜋𝑛. Indeed, this holds by the argument in the beginning of the proof since D𝑋 ≃ Σ𝑛𝑋 is
𝑟-connective with 𝑟 ∶= 𝑛−𝑎

2 ≤ 𝑝, and so the map in question is at least 𝑛-connective (where we note that
𝑎 = 0 if 𝑟 = 𝑝).

To prove the injectivity of the map (66), let us now assume further that 𝑛 ≤ min(2𝑝 − 1, 2𝑚) and let
𝑏 ∈ {0, 1} be such that 𝑛 + 1 + 𝑏 is even (keeping 𝑎 as above). Then 𝑏 ≥ 𝑛 − 2𝑚 + 1 (where we note
that if 𝑛 = 2𝑚 then 𝑏 = 1) and so by Proposition 1.2.261.2.26 ii)ii) every

(−𝑛−𝑎
2

)

-connective Poincaré object
(𝑌 , 𝑞) in (Mod𝜔𝐵 , Ϙ

[−𝑛]
𝑁 ) which admits a Lagrangian, also admits a Lagrangian 𝐿 → 𝑌 such that 𝐿 and

f ib[𝐿 → 𝑌 ] are
(−𝑛−1−𝑏

2

)

-connective. Let us therefore assume that (𝑋, 𝑞) is a (−𝑛−𝑎2 )-connective Poincaré
object in (Mod𝜔𝐴, Ϙ

[−𝑛]
𝑀 ) whose image in (Mod𝜔𝐵 , Ϙ

[−𝑛]
𝑁 ) is equipped with a Lagrangian 𝐿 → 𝑓!𝑋 such that

𝐿 and 𝑁 ∶= f ib(𝐿 → 𝑓!𝑋) are
(−𝑛−1−𝑏

2

)

-connective. We will then show that 𝐿 → 𝑓!(𝑋) can be lifted
to a Lagrangian of (𝑋, 𝑞) with respect to Ϙ[−𝑛]𝑀 . Indeed, we first note that 𝐿 is a

(−𝑛−1−𝑏
2

)

-connective
𝐵-module whose dual D𝐿 ≃ Σ𝑛+1𝑁 is 𝑟′ ∶=

( 𝑛+1−𝑏
2

)

-connective, and so by Remark 1.2.281.2.28 we may
write 𝐿 = fib(𝑈 → 𝑉 ) for 𝑈, 𝑉 ∈ Proj(𝐵)[−𝑟′] and similarly we may write 𝑋 = cof(𝑃 → 𝑄) for
𝑃 ,𝑄 ∈ Proj(𝐴)[−𝑟′]. In addition, we may choose 𝑃 = 0 if 𝑎 = 0, 𝑏 = 1 and 𝑉 = 0 if 𝑎 = 1, 𝑏 = 0. It is a
direct consequence of the projectivity of 𝑃 ,𝑄,𝑈 , and 𝑉 that the map 𝐿→ 𝑓!𝑋) factors as the composition

𝐿⟶ 𝑈
𝛼

⟶ 𝑓!𝑄⟶ 𝑓!𝑋.

Using Remark 1.2.321.2.32 we may lift𝑈 → 𝑉 to a map𝑈 ′ → 𝑉 ′, and the map 𝛼 to 𝛼′ ∶ 𝑈 ′ → 𝑄. We then define
𝐿′ as the fibre of 𝑈 ′ → 𝑉 ′ and therefore we lift the map 𝐿 → 𝑓!𝑋 to the composite 𝐿′ → 𝑈 ′ → 𝑄 → 𝑋.



26 CALMÈS, DOTTO, HARPAZ, HEBESTREIT, LAND, MOI, NARDIN, NIKOLAUS, AND STEIMLE

In order to extend this lift to a lift of the entire surgery datum we claim that the map
Ϙ𝑀 (𝐿′) ⟶ Ϙ𝑁 (𝑓!𝐿′)

is injective on 𝜋𝑛 and surjective on 𝜋𝑛+1. Indeed, this follows from the argument at the beginning of the
proof since D𝐿 ≃ Σ𝑛+1𝑁 is 𝑟′-connective, and so the map Ϙ𝑀 (𝐿′) → Ϙ𝑁 (𝑓!𝐿′) is at least (𝑛+1)-connective
(where we note that 𝑏 = 0 when 𝑟′ = 𝑝). □

We can now apply Proposition 1.2.291.2.29 to compare the L-spectra of connective ring spectra to the L-spectra
of their 𝜋0’s. Let 𝐴 be a connective ring spectrum and 𝑀 be a projective invertible module with involution
over 𝐴. Associated to it, we have the Poincaré structures Ϙq𝑀 and Ϙs𝑀 given by

Ϙ
q
𝑀 (𝑋) = hom𝐴⊗𝐴(𝑋 ⊗𝑋,𝑀)hC2

and Ϙ
s
𝑀 (𝑋) = hom𝐴⊗𝐴(𝑋 ⊗𝑋,𝑀)hC2 .

In addition, we have the Poincaré structure Ϙgs𝑀 = Ϙ≥0𝑀 , see [II].4.2.234.2.23 and for an E∞-ring spectrum 𝐵, the
Tate Poincaré structure Ϙt𝐵 , see Example [II].3.2.123.2.12. Explicitly, these are given by the following pullbacks

Ϙ
gs
𝑀 (𝑋) hom𝐴(𝑋, 𝜏≥0𝑀 tC2 ) Ϙ

t
𝐵(𝑌 ) hom𝐵(𝑌 , 𝐵)

Ϙ
s
𝑀 (𝑋) hom𝐴(𝑋,𝑀 tC2 ) Ϙ

s
𝐵(𝑌 ) hom𝐵(𝑌 , 𝐵tC2 )

where the right most vertical map is induced by the Tate-valued Frobenius𝐵 → 𝐵tC2 . The maps𝐴 → 𝜋0(𝐴)
and 𝑀 → 𝜋0(𝑀) induce canonical Poincaré functors (Mod𝜔𝐴, Ϙ𝑀 ) → (Mod𝜔𝜋0(𝐴), Ϙ𝜋0(𝑀)) for Ϙ𝑀 denoting
both of the Poincaré structures Ϙq𝑀 and Ϙgs𝑀 . Likewise, 𝐵 → 𝜋0(𝐵) induces a canonical Poincaré functor
(Mod𝜔𝐵 , Ϙ

t
𝐵) → (Mod𝜔𝜋0(𝐵), Ϙ

t
𝜋0(𝐵)

).

1.2.33. Corollary. For a connective ring spectrum𝐴, a projective invertible module with involution𝑀 over
𝐴, and a connective E∞-ring spectrum 𝐵, we have that:

i) The map Lq(𝐴;𝑀) → Lq(𝜋0𝐴;𝜋0(𝑀)) is an equivalence.
ii) The map Lt

𝑛(𝐵) → Lt
𝑛(𝜋0(𝐵)) is an isomorphism for 𝑛 ≤ 0 and surjective for 𝑛 = 1.

iii) The map Lgs
𝑛 (𝐴;𝑀) → Lgs

𝑛 (𝜋0(𝐴);𝜋0(𝑀)) is an isomorphism for 𝑛 ≤ −3 and surjective for 𝑛 = −2.
If the C2-action on the spectrum underlying 𝑀 is trivial, the map Lgs

𝑛 (𝐴;𝑀) → Lgs
𝑛 (𝜋0(𝐴);𝜋0(𝑀)) is

an isomorphism for 𝑛 ≤ −1 and surjective for 𝑛 = 0.

Proof. The claims follow from Proposition 1.2.291.2.29. For i)i) this is because the quadratic Poincaré structure
Ϙ
q
𝑀 is 𝑚-quadratic for every 𝑚, and it has trivial linear part. For ii)ii) we use that Ϙt𝐵 is 0-quadratic, and that

the map induced on linear parts is 𝐵 → 𝜋0(𝐵) which is 1-connective. Similarly, for iii)iii) we use that Ϙgs𝑀 is
0-quadratic, that 𝐴 → 𝜋0(𝐴) is 1-connective, and that the map on linear parts 𝜏≥0𝑀 tC2 → 𝜏≥0(𝜋0(𝑀)tC2 )
is (−1)-connective. If moreover the involution on 𝑀 is trivial, the map 𝜋0(𝑀hC2 ) → 𝜋0((𝜋0𝑀)hC2 ) is
surjective, since in this case the target is 𝜋0𝑀 and 𝑀 is a retract of 𝑀hC2 . Then by the commutativity of
the diagram

𝜋0(𝑀hC2 ) 𝜋0(𝑀 tC2 )

𝜋0((𝜋0𝑀)hC2 ) 𝜋0((𝜋0𝑀)tC2 )

and the fact that the bottom horizontal map is surjective, it follows that the right vertical map is surjective
and thus that the map on linear parts 𝜏≥0𝑀 tC2 → 𝜏≥0(𝜋0(𝑀)tC2 ) is in fact 0-connective. □

1.2.34. Remark. We note that 𝕊2−2𝜎 ⊗ ko is an example of an invertible module with involution over ko
where the map (𝕊2−2𝜎 ⊗ ko)tC2 → (𝜋0(𝕊2−2𝜎 ⊗ ko))tC2 ≅ ℤtC2 is not 𝜋0-surjective, so that the map on
linear terms relevant for part iii)iii) of Corollary 1.2.331.2.33 is indeed only (−1)-connective in general. To see this,
we use that 𝜋∗(kotC2 ) = ℤ∧

2[𝑢
±] with |𝑢| = 4, so that (𝕊2−2𝜎 ⊗ ko)tC2 ≃ Σ2kotC2 has trivial 𝜋0, whereas

ℤtC2 has non-trivial 𝜋0. Another example is given by 𝕊2−2𝜎 as an invertible module with involution over 𝕊.

We finish this section with further examples related to the sphere spectrum.
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1.2.35. Example. First, we note that the universal Poincaré structure Ϙu agrees with the Tate Poincaré struc-
ture Ϙt on Mod𝜔𝕊 , so we obtain that Lu

𝑛(𝕊) → Lt
𝑛(ℤ) is an isomorphism for 𝑛 ≤ 0 and surjective for 𝑛 = 1.

We may also consider the canonical Poincaré functor (Mod𝜔𝕊 , Ϙ
u) → (Dp(ℤ), Ϙgsℤ ). Both Ϙu and Ϙgsℤ

are 0-quadratic, and the map to investigate on linear parts in order to apply Proposition 1.2.291.2.29 is given by
𝕊 → 𝜏≥0ℤtC2 , which is 0-connective. We deduce from Proposition 1.2.291.2.29 that the map Lu

𝑛(𝕊) → Lgs
𝑛 (ℤ) is

an isomorphism for 𝑛 ≤ −1 and a surjection for 𝑛 = 0.

1.3. Surgery for 𝑟-symmetric structures. In this section, we prove a comparison result between genuine
symmetric and symmetric L-theory. Algebraic surgery for symmetric Poincaré structures is not as straight-
forward as for the quadratic ones, and we will need to further assume that the base ring is left-coherent of
finite left-global dimension. We recall that a ring is called left-coherent, if its finitely presented left modules
form an abelian category. From what follows we omit the word left from the notation, and stress here that
in the present section, commutativity of 𝑅 is not needed. We note that Noetherian rings are coherent, and
that a standard example of coherent but not necessarily Noetherian rings are valuation rings.

Let 𝑅 be a ring and 𝑀 an invertible ℤ-module with involution over 𝑅. For an integer 𝑑 ≥ 0, we recall
that 𝑅 has global dimension 𝑑 if every 𝑅-module 𝑁 has a projective resolution of length at most 𝑑. When
𝑅 is in addition coherent, one can find such a resolution where the modules are moreover finitely generated,
provided𝑁 is finitely presented. In this case the connective cover functor 𝜏≥0 and the truncation functor 𝜏≤0
preserve perfect 𝑅-modules, and so Dp(𝑅) inherits from D(𝑅) its Postnikov 𝑡-structure, so that Dp(𝑅)≥0
consists of the 0-connective perfect 𝑅-modules and Dp(𝑅)≤0 of the 0-truncated perfect 𝑅-modules. This
uses that the lowest non-trivial homotopy group of a perfect complex is finitely presented. The duality
D∶ Dp(𝑅)op → Dp(𝑅) induced by 𝑀 interacts with the 𝑡-structure as follows:

D(Dp(𝑅)≥0) ⊆ Dp(𝑅)≤0 and D(Dp(𝑅)≤0) ⊆ Dp(𝑅)≥−𝑑 .

The first inclusion is immediate from Remark 1.1.71.1.7, and the second one follows from the Universal Coef-
ficient spectral sequence computing H∗ hom𝑅(𝑋,𝑀), since Ext𝑖𝑅 = 0 for every 𝑖 ≥ 𝑑 + 1 as 𝑅 has global
dimension ≤ 𝑑.

We will cast the algebraic surgery argument for symmetric Poincaré structures in the setting of a gen-
eral Poincaré ∞-category (C, Ϙ) equipped with a 𝑡-structure which interacts with the underlying duality
D∶ Cop → C in the way described above, as we shall use this more general setup for a category of torsion
modules, which is not itself given by modules over a discrete ring, in Theorem 2.2.42.2.4 below. Similarly to
Definition 1.1.21.1.2 (see also Remark 1.1.31.1.3), we will say that the Poincaré structure Ϙ is 𝑟-symmetric if the fibre
of Ϙ(𝑋) → ϘsD(𝑋) is (−𝑟)-truncated for every 𝑋 ∈ C≥0, where

Ϙ
s
D(𝑋) = homC(𝑋,D𝑋)hC2

is the symmetric Poincaré structure associated to the duality D. Given integers 𝑎, 𝑏 ≥ −1 we define
Pn𝑎𝑛(C, Ϙ),M

𝑎,𝑏
𝑛 (C, Ϙ) and L𝑎,𝑏𝑛 (C, Ϙ) as in Definition 1.2.11.2.1, where we interpret the connectivity requirement

on Poincaré objects and Lagrangians as pertaining to the given 𝑡-structure on C. For a ring coherent ring 𝑅
of finite global dimension, L𝑎,𝑏𝑛 (Dp(𝑅); Ϙ) coincides by definition with the earlier defined L𝑎,𝑏𝑛 (𝑅; Ϙ). More-
over, as in Remark 1.2.31.2.3, L𝑎,𝑏𝑛 (C, Ϙ) is a group if 𝑏 ≥ 𝑎.

1.3.1. Proposition (Surgery for 𝑟-symmetric Poincaré structures). Let C be a stable ∞-category with a
bounded 𝑡-structure C≥0,C≤0. Let Ϙ be an 𝑟-symmetric Poincaré structure on C with duality D∶ C → Cop

such that D(C≤0) ⊆ C≥−𝑑 for some integer 𝑑 ≥ 0. Fix an 𝑛 ∈ ℤ and let 𝑎 ≥ 𝑑 − 1, 𝑏 ≥ 𝑑 be integers with
𝑏 ≥ 𝑎, and such that 𝑛 + 𝑎 is even and 𝑎 ≥ −𝑛 + 2𝑑 − 2𝑟. Then:

i) Every Poincaré object in Pn(Dp(𝑅), Ϙ[−𝑛]) is cobordant to one which is
(−𝑛−𝑎

2

)

-connective.
ii) Every Lagrangian 𝐿 → 𝑋 of a

(−𝑛−𝑎
2

)

-connective Poincaré object (𝑋, 𝑞) ∈ Pn(Dp(𝑅), Ϙ[−𝑛]) is
cobordant relative to 𝑋 to a Lagrangian 𝐿′ → 𝑋 such that 𝐿′ is ⌈−𝑛−1−𝑏2 ⌉-connective and f ib[𝐿′ →

𝑋] is ⌊−𝑛−1−𝑏2 ⌋-connective.

In particular, the canonical map L𝑎,𝑏𝑛 (C, Ϙ) → L𝑛(C, Ϙ) is an isomorphism.

1.3.2. Remark. Recalling Remark 1.2.21.2.2 we note that the Poincaré objects appearing in i)i) above are concen-
trated in degrees [−𝑛−𝑎2 , −𝑛+𝑎2 ] and the Lagrangians in ii)ii) are concentrated in degrees [⌈−𝑛−1−𝑏2 , −𝑛−1+𝑏2 ⌉].
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Before giving a proof of Proposition 1.3.11.3.1, we establish some of its consequences and start by specialising
Proposition 1.3.11.3.1 to the case C = Dp(𝑅):

1.3.3. Corollary. Let 𝑀 be an invertible ℤ-module with involution over 𝑅 and suppose that 𝑅 is coherent
of finite global dimension 𝑑. Let Ϙ be an 𝑟-symmetric compatible Poincaré structure on Dp(𝑅), for 𝑟 ∈ ℤ.
Then for 𝑛 ≥ 𝑑 − 2𝑟 the following holds:

i) If 𝑛 + 𝑑 is even, the canonical map

L𝑑,𝑑𝑛 (𝑅; Ϙ) ⟶ L𝑛(𝑅; Ϙ)

is an isomorphism.
ii) If 𝑛 + 𝑑 is odd, the canonical map

L𝑑−1,𝑑𝑛 (𝑅; Ϙ) ⟶ L𝑛(𝑅; Ϙ)

is an isomorphism.

1.3.4. Corollary. Let 𝑀 be an invertible ℤ-module with involution over 𝑅 and assume that 𝑅 is coherent
of finite global dimension 𝑑. Let Ϙ be an 𝑟-symmetric compatible Poincaré structure on Dp(𝑅), for 𝑟 ∈ ℤ.
Then the following holds:

i) If 𝑑 = 0, then L2𝑘−1(𝑅; Ϙ) = 0 whenever 𝑘 ≥ 1 − 𝑟;
ii) If 𝑑 ≤ 1, then L2𝑘(𝑅; Ϙ) ≅ W(Proj(𝑅); Ω2𝑘

Ϙ(Ω𝑘−)) whenever 𝑘 ≥ 1 − 𝑟. For Ϙ = Ϙ≥𝑚𝑀 , the latter is
isomorphic to the classical Witt group of (−1)𝑘-quadratic forms for 𝑘 = 𝑚 − 2, (−1)𝑘-even forms for
𝑘 = 𝑚 − 1, and (−1)𝑘-symmetric forms for all 𝑘 ≥ 𝑚.

Proof. For part i)i), we apply Proposition 1.3.11.3.1 in case 𝑑 = 0 with (𝑎, 𝑏) = (−1, 0). For part ii)ii), we apply
Corollary 1.3.31.3.3 in case 𝑑 = 1, combined with Proposition 1.2.141.2.14 and obtain isomorphisms

L2𝑘(𝑅; Ϙ) ≅ L0,1
2𝑘 (𝑅; Ϙ) ≅ L0,0

2𝑘 (𝑅; Ϙ).

Then, we observe that there is a canonical isomorphism W(Proj(𝑅); Ω2𝑘
Ϙ(Ω𝑘−)) ≅ L0,0

2𝑘 (𝑅; Ϙ) induced by
sending an element represented by (𝑃 , 𝑞) to the element represented by (𝑃 [−𝑘], 𝑞). The remaining claim
follows by inspection of 𝜋2𝑘(Ϙ

≥𝑚
𝑀 (𝑃 [−𝑘])) ≅ 𝜋0(Ϙ

≥𝑚−𝑘
(−1)𝑘𝑀

(𝑃 )). □

1.3.5. Remark. We notice that a ring 𝑅 is of global dimension 0 if and only if it is semisimple, and that
semisimple rings are Noetherian and thus coherent. Part i)i) above hence recovers Ranicki’s result that
the odd-dimensional symmetric and quadratic L-groups of semisimple rings vanish [Ran92Ran92, Proposition
22.7]: Indeed, the symmetric case follows from the above since Ϙs is 𝑟-symmetric for every 𝑟, and hence
L2𝑘−1(𝑅; Ϙs) = 0 for all 𝑘. For the quadratic case, by Corollary R.10R.10 applied to Ϙq𝑀 , it suffices to show that
Lq
−3(𝑅;𝑀) = 0. But by Corollary 1.2.121.2.12 we have that Lq

−3(𝑅;𝑀) ≅ Lgs
−3(𝑅;𝑀) = L−3(𝑅; Ϙ

gs
𝑀 ). Now, Ϙgs

is 2-symmetric, so i)i) applies for 𝑘 = −1.
For completeness, we note that if𝐾 is a field of characteristic different from 2, alsoLq

4𝑘+2(𝐾) ≅ Ls
4𝑘+2(𝐾)

vanishes: By Corollary 1.3.41.3.4 it is given by the Witt group of anti-symmetric forms over 𝐾 , but any such
form admits a symplectic basis and hence a Lagrangian.

Proof of 1.3.11.3.1. For part i)i), it suffices to show that every Poincaré object (𝑋, 𝑞) ∈ Pn(C, Ϙ[−𝑛]) is cobordant
to one whose underlying object is (−𝑛−𝑎2 )-connective. Let 𝑘 = −𝑛−𝑎−2

2 , define 𝑊 ∶= Ω𝑛D𝜏≤𝑘𝑋 and let

𝑓 ∶ 𝑊 ⟶ Ω𝑛D𝑋
𝑞
≃ 𝑋

be the map dual to the truncation map 𝑋 → 𝜏≤𝑘𝑋. Since D(C≤0) ⊆ C≥−𝑑 we have that 𝑊 is (−𝑛− 𝑘− 𝑑)-
connective. Since D𝑊 ≃ Σ𝑛𝜏≤𝑘𝑋 is (𝑛+𝑘)-truncated we conclude that Ω𝑛 homC(𝑊 ,D𝑊 )hC2 is (𝑛+2𝑘+
𝑑)-truncated. On the other hand, since Ϙ is 𝑟-symmetric, the fibre of the map

Ω𝑛Ϙ(𝑊 ) ⟶ Ω𝑛ϘsD(𝑊 ) = Ω𝑛 homC(𝑊 ,D𝑊 )hC2

is (𝑘+𝑑 − 𝑟)-truncated, so that Ω𝑛Ϙ(𝑊 ) is max(𝑛+2𝑘+𝑑, 𝑘+𝑑 − 𝑟)-truncated. Spelling out the definition
of 𝑘 and using the estimates in the assumptions, we find that

max(𝑛 + 2𝑘 + 𝑑, 𝑘 + 𝑑 − 𝑟) < 0.
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We hence get that Ω𝑛Ϙ(𝑊 ) is (−1)-truncated and so Ω∞+𝑛
Ϙ(𝑊 ) ≃∗. The restriction of 𝑞 to 𝑊 is con-

sequently null-homotopic, and we may therefore perform surgery along 𝑓 ∶ 𝑊 → 𝑋 to obtain a new
Poincaré object (𝑋′, 𝑞′), given by the cofibre of the resulting map 𝑊 → 𝜏≥𝑘+1𝑋 (see diagram (44)). Since
𝑊 is (−𝑛 − 𝑘 − 𝑑)-connective it is in particular (𝑘 + 1)-connective (since −2𝑘 = 𝑛 + 𝑎 + 2 ≥ 𝑛 + 𝑑 + 1),
and so 𝑋′ is (𝑘 + 1)-connective. Since 𝑘 + 1 = −𝑛−𝑎

2 , part i)i) is shown.
To prove part ii)ii), let (𝑋, 𝑞) be a Poincaré object such that 𝑋 is (−𝑛−𝑎2 )-connective, and let (𝐿→ 𝑋, 𝑞, 𝜂)

be a Lagrangian. Let 𝑁 ∶= f ib(𝐿 → 𝑋), so that 𝐿 ≃ Ω𝑛+1D𝑁 . If 𝐿 is ⌈

−𝑛−1−𝑏
2 ⌉-connective then

𝑁 is ⌊

−𝑛−1−𝑏
2 ⌋-connective (since 𝑋 is (−𝑛−𝑎2 )-connective and 𝑏 ≥ 𝑎) and we are done. Otherwise, let

𝑙 = ⌈

−𝑛−1−𝑏
2 ⌉ − 1, define 𝑁 ′ ∶= Ω𝑛+1D𝜏≤𝑙𝐿 and let

𝑓 ∶ 𝑁 ′ ⟶ 𝑁

be the map dual to the truncation map 𝐿 → 𝜏≤𝑙𝐿. We may view this map as a map (𝑁 ′ → 0) → (𝐿 →
𝑋) in the metabolic category, and we claim that it extends to a Lagrangian surgery datum for which it
suffices to show that Ϙmet(𝑁 ′ → 0) ≃ ΩϘ(𝑁 ′) is (𝑛 − 1)-truncated. Since D(C≤0) ⊆ C≥−𝑑 we have
that 𝑁 ′ is (−𝑛 − 1 − 𝑙 − 𝑑)- connective. Since D𝑁 ′ ≃ Σ𝑛+1𝜏≤𝑙𝐿 is (𝑛 + 1 + 𝑙)-truncated we have that
Ω𝑛+1 homC(𝑁 ′,D𝑁 ′)hC2 is (𝑛 + 1 + 2𝑙 + 𝑑)-truncated. On the other hand since Ϙ is 𝑟-symmetric the fibre
of the map

Ω𝑛+1Ϙ(𝑁 ′) ⟶ Ω𝑛+1 homC(𝑁 ′,D𝑁 ′)hC2

is (𝑙 + 𝑑 − 𝑟)-truncated, so that Ω𝑛+1Ϙ(𝑁 ′) is max(𝑛 + 1 + 2𝑙 + 𝑑, 𝑙 + 𝑑 − 𝑟)-truncated. Now by definition
of 𝑙 and the estimates in the assumptions we have that

max(𝑛 + 1 + 2𝑙 + 𝑑, 𝑙 + 𝑑 − 𝑟) < 0

We hence get that Ω𝑛+1Ϙ(𝑁 ′) is (−1)-truncated as needed. We may therefore perform Lagrangian surgery
along 𝑁 ′ → 𝑁 to obtain a new Lagrangian 𝐿′ → 𝑋, such that 𝐿′ is given by the cofibre of the resulting
map 𝑁 ′ → 𝜏≥𝑙+1𝐿. Since 𝑁 ′ is (−𝑛 − 1 − 𝑙 − 𝑑)-connective it is in particular (𝑙 + 1)-connective (since
−2𝑙 ≥ 𝑛 + 𝑏 + 2 ≥ 𝑛 + 𝑑 + 2), and so 𝐿′ is (𝑙 + 1)-connective. This proves part ii)ii).

Finally, the bijectivity of the map L𝑎,𝑏𝑛 (C, Ϙ) → L𝑛(C, Ϙ) follows just as in the proof of Proposition 1.2.61.2.6.
□

1.3.6. Remark. Similarly to Remark 1.2.111.2.11, Proposition 1.3.11.3.1 allows us to conclude that the sequence

𝜋0M
𝑎,𝑏
𝑛 (C, Ϙ) ⟶ 𝜋0Pn𝑎𝑛(C, Ϙ) ⟶ L𝑎,𝑏𝑛 (C, Ϙ)

is exact in the middle, when 𝑎, 𝑏 and 𝑛 satisfy the assumptions of Proposition 1.3.11.3.1. In particular for 𝑎 =
𝑏 = 𝑛 = 0 we find that, for every coherent ring𝑅 of global dimension 0, every symmetric, even or quadratic
𝑀-valued Poincaré object in Proj(𝑅) which is zero in the Witt group is strictly metabolic.

We now use Proposition 1.3.11.3.1 in the case 𝑑 = 0 to describe the symmetric L-groups of stable ∞-
categories with a 𝑡-structure in terms of Witt groups associated to the heart of the 𝑡-structure. So let C be
a stable ∞-category with a 𝑡-structure (C≥0,C≤0) and a duality D∶ C → C

op such that D sends C≤0 to C≥0
and vice versa. In particular, D induces a duality D♡ ∶ C♡ → C♡ on the heart of C, and we may consider
C♡ an abelian category with duality. As in the previous section, we let ϘgsD♡

∶ C♡ → A𝑏 be the quadratic
functor that takes 𝐴 ∈ C♡ to the abelian subgroup of strict invariants

Ϙ
gs
D♡

(𝐴) ∶= homC♡ (𝐴,D♡𝐴)C2 .

We let W(C♡, ϘgsD♡
) be the corresponding symmetric Witt group, defined as the quotient of the monoid

𝜋0Pn(C♡, ϘgsD♡
) by the submonoid of strictly metabolic objects. Thus two elements of 𝜋0Pn(C♡, ϘgsD♡

) are
identified in the Witt group if they are isomorphic after adding strictly metabolic objects. By letting ϘsD be
the symmetric Poincaré structure associated to D, we observe that since 𝜋0ϘsD(𝐴) = Ϙ

gs
D♡

(𝐴) for every object
𝐴 of C♡, there is a group isomorphism

W(C♡, ϘgsD♡
) ≅ L0,0

0 (C, ϘsD)

analogous to the isomorphism for the Witt group of Remark 1.2.41.2.4.
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1.3.7. Example. If𝑅 has global dimension 0, the heart of C = Dp(𝑅) agrees with Proj(𝑅) and by definition

W(Dp(𝑅)♡, Ϙgs
D♡

𝑀
) = W(Proj(𝑅); Ϙgs𝑀 )

where the latter is the classical Witt group of symmetric forms as defined in Remark 1.2.41.2.4.
Another example is given by certain torsion-modules over a 1-dimensional ring, as we elaborate on and

exploit in Theorem 2.2.42.2.4.

Let us also write −D♡ for the duality on C♡ defined by the functor D♡ but where we replace the isomor-
phism 𝜂∶ id → (D♡)opD♡ with −𝜂.

1.3.8. Corollary. In the above situation, let ϘsD ∶ C → S𝑝 be the symmetric Poincaré structure associated
to D. Then there are canonical isomorphisms

L𝑛(C; ϘsD) ≅

⎧

⎪

⎨

⎪

⎩

W(C♡, ϘgsD♡
) for 𝑛 ≡ 0 mod 4,

W(C♡, Ϙgs−D♡
) for 𝑛 ≡ 2 mod 4,

0 else.

In particular, every element of 𝜋0Pn(C♡, ϘgsD♡
) which is zero in W(C♡, ϘgsD♡

) is metabolic.

Proof. Apply Proposition 1.3.11.3.1 in the case of 𝑟 = ∞, 𝑑 = 0 and take (𝑎, 𝑏) to be (0, 0) when 𝑛 is even and
(−1, 0) when 𝑛 is odd. □

Our next goal is to use the surgery results above in order to identify the L-groups of an 𝑟-symmetric
structure with the corresponding symmetric L-groups in a suitable range. The following corollary should
be compared with Corollary 1.2.121.2.12 above:

1.3.9. Corollary. Let 𝑀 be an invertible ℤ-module with involution over 𝑅 and suppose that 𝑅 is coherent
of finite global dimension 𝑑. Let Ϙ be an 𝑟-symmetric Poincaré structure on Dp(𝑅) compatible with 𝑀 , for
𝑟 ∈ ℤ. Then the canonical map

L𝑛(𝑅; Ϙ) ⟶ L𝑛(𝑅; Ϙs𝑀 ) = Ls
𝑛(𝑅;𝑀)

is injective for 𝑛 ≥ 𝑑 − 2𝑟 + 2 and bijective for 𝑛 ≥ 𝑑 − 2𝑟 + 3.

Proof. We consider the commutative diagram

L𝑑,𝑑𝑛 (𝑅; Ϙ) L𝑛(𝑅; Ϙ) L𝑑−1,𝑑𝑛 (𝑅; Ϙ)

L𝑑,𝑑𝑛 (𝑅; Ϙs𝑀 ) L𝑛(𝑅; Ϙs𝑀 ) L𝑑−1,𝑑𝑛 (𝑅; Ϙs𝑀 )

and use Corollary 1.3.31.3.3 and Lemma 1.2.241.2.24 to conclude the bijectivity claim of the corollary. To see injec-
tivity for 𝑛 = 𝑑 − 2𝑟+ 2, again using Corollary 1.3.31.3.3, it will suffice to show that the left vertical map in the
above diagram is injective. In light of Remark 1.3.61.3.6 it will suffice to show that if (𝑋, 𝑞) is a (−𝑑 + 𝑟 − 1)-
connective Poincaré object in (Dp(𝑅), Ϙ[−𝑛]) whose associated Poincaré object in (Dp(𝑅), (Ϙs𝑀 )[−𝑛]) admits
a Lagrangian 𝐿→ 𝑋 such that 𝐿 is (−𝑑+ 𝑟−1)-connective then 𝐿 can be refined to a Lagrangian of (𝑋, 𝑞)
with respect to Ϙ. For this, it will suffice to show that for an 𝐿 with this connectivity bound, the map

Ω𝑛Ϙ(𝐿) ⟶ Ω𝑛Ϙs𝑀 (𝐿)

is surjective on 𝜋1 and injective on 𝜋0. Indeed, this map is (−1)-truncated by Remark 1.1.31.1.3 since Ϙ is
𝑟-symmetric. □

As a consequence, we obtain the following result, which proves Theorem 66 and the first part of Theorem 33
from the introduction.

1.3.10. Corollary. Let𝑀 be an invertible ℤ-module with involution over 𝑅 and suppose that 𝑅 is coherent
of finite global dimension 𝑑. Then the canonical maps

Lgs
𝑛 (𝑅;𝑀) ⟶ Ls

𝑛(𝑅;𝑀) and GWgs
𝑛 (𝑅;𝑀) ⟶ GWs

𝑛(𝑅;𝑀)
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are injective for 𝑛 ≥ 𝑑 − 2 and bijective for 𝑛 ≥ 𝑑 − 1. Likewise, the maps
Lgq
𝑛 (𝑅;𝑀) ⟶ Ls

𝑛(𝑅;𝑀) and GWgq
𝑛 (𝑅;𝑀) ⟶ GWs

𝑛(𝑅;𝑀)
are injective for 𝑛 ≥ 𝑑 + 2 and bijective for 𝑛 ≥ 𝑑 + 3.

Proof. By Theorem 11, the canonical squares

GWgq(𝑅;𝑀) GWgs(𝑅;𝑀) GWs(𝑅;𝑀)

Lgq(𝑅;𝑀) Lgs(𝑅;𝑀) Ls(𝑅;𝑀)

are pullbacks. Hence the Grothendieck–Witt part of the corollary follows from the L-theory part. Moreover,
the L-theory parts then follow from Corollary 1.3.91.3.9 using that Ϙgs is 2-symmetric and Ϙgq is 0-symmetric.

□

1.3.11. Example. In general, the bounds obtained in Corollary 1.3.101.3.10 are sharp, as the following example
shows. Consider the 𝑑-dimensional ring 𝔽2[ℤ𝑑] as a ring with anti-involution induced by the inversion of
the group ℤ𝑑 . We claim that the map Lgs(𝔽2[ℤ𝑑) → Ls(𝔽2[ℤ𝑑]) is not surjective on 𝜋𝑑−2. To see this we
use the Shaneson splitting proved by Ranicki for Ls and Milgram-Ranicki for Lgs. In Paper [IVIV] we give a
proof of this result which works simultaneously for both variants, but for our purposes the following version
is sufficient. Let 𝑅 be a ring with anti-involution and consider the ring 𝑅[ℤ] with anti-involution induced
by the group inversion of ℤ. Suppose that K0(𝑅) ≅ K0(𝑅[ℤ]) ≅ ℤ, for instance 𝑅 could be a field or the
integers. Then, for Ϙ = Ϙgs, Ϙs, there is a natural equivalence

L(𝑅[ℤ]; Ϙ) ≃ L(𝑅; Ϙ)⊕ ΣL(𝑅; Ϙ).
By induction, we deduce that the map Σ𝑑 Lgs(𝔽2) → Σ𝑑 Ls(𝔽2) is a retract of the map Lgs(𝔽2[ℤ𝑑]) →
Ls(𝔽2[ℤ𝑑]). Therefore, in order to see that the latter map is not surjective on 𝜋𝑑−2 it suffices to argue that
the map Lgs(𝔽2) → Ls(𝔽2) is not surjective on 𝜋−2. Since Ls

2(𝔽2) ≅ ℤ∕2 but Lgs(𝔽2) = 0, this is indeed the
case. A similar argument shows that for 𝜖 = −1, the map Lgs

0 (ℤ[ℤ]; 𝜖) → Ls
0(ℤ[ℤ]; 𝜖) is not surjective on

𝜋0.
We note that for 𝑑 = 0, this shows that the obtained bounds are sharp also for commutative rings viewed

as rings with trivial anti-involution. However, at the time of writing we do not have a specific example of a
commutative ring where the map Lgs(𝑅) → Ls(𝑅) is not an isomorphism on some non-negative homotopy
group, though we believe that they must exist in abundance.

1.3.12. Remark. If 𝑅 is a right-coherent ring of finite right-global dimension, we may apply the results of
Corollaries 1.3.41.3.4, 1.3.91.3.9, and 1.3.101.3.10 and Remark 1.3.51.3.5 to the ring𝑅op with Poincaré structure Ϙ∨ as described
in Remark R.11R.11: By Example 1.1.51.1.5 Ϙ∨ is 𝑟-symmetric if Ϙ is. Using then the equivalence of Poincaré ∞-
categories (Dp(𝑅op), Ϙ∨) ≃ (Dp(𝑅), Ϙ), we obtain the conclusions of Corollaries 1.3.41.3.4, 1.3.91.3.9, and 1.3.101.3.10
and Remark 1.3.51.3.5 also for right-coherent rings of finite right-global dimension.

1.3.13. Remark. In Theorem 1.2.221.2.22 we have shown that the non-negative genuine symmetric L-groups
coincide with Ranicki’s L-groups of short complexes. The comparison range above then improves on Ran-
icki’s classical theorem that established injectivity of the map Lgs

𝑛 (𝑅) → Ls(𝑅) for non-negative 𝑛 ≥ 2𝑑−3
and bijectivity for non-negative 𝑛 ≥ 2𝑑 − 2 for Noetherian rings of global dimension 𝑑.

Since Dedekind rings have global dimension ≤ 1, and by applying the fibre sequence of Theorem 11 we
immediately find:

1.3.14. Corollary. Let 𝑅 be a Dedekind ring, e.g. the ring of integers in an algebraic number field. Then
the canonical maps

Lgs
𝑛 (𝑅;𝑀) ⟶ Ls

𝑛(𝑅;𝑀) and GWgs
𝑛 (𝑅;𝑀) ⟶ GWs

𝑛(𝑅;𝑀)
are injective for 𝑛 = −1 and bijective for 𝑛 ≥ 0. In particular, the non-negative homotopy groups of
Lgs
𝑛 (𝑅;𝑀) are 4-periodic. Similarly, the maps

Lgq
𝑛 (𝑅;𝑀) ⟶ Ls

𝑛(𝑅;𝑀) and GWgq
𝑛 (𝑅;𝑀) ⟶ GWs

𝑛(𝑅;𝑀)
are injective for 𝑛 = 3 and bijective for 𝑛 ≥ 4.
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We recall that by the main Theorem of [HS21HS21] the non-negative homotopy groups of GWgs
𝑛 (𝑅;𝑀) and

GWgq
𝑛 (𝑅;𝑀) are isomorphic to the classical Grothendieck-Witt groups of symmetric and quadratic forms,

respectively. Further, we find:

1.3.15. Corollary. Let 𝑅 be a Dedekind ring and 𝑀 an invertible ℤ-module with involution over 𝑅. Then
the canonical maps

GWs
cl(𝑅;𝑀) ⟶ 𝜏≥0 GW

s(𝑅;𝑀) and 𝜏≥4 GW
q
cl(𝑅;𝑀) ⟶ 𝜏≥4 GW

s(𝑅;𝑀)

are equivalences.

1.3.16. Remark. We now prove the second part of Theorem 33 from the introduction. So let𝑅 be a coherent
ring of finite global dimension d. We have equivalences Σ2 Lgs(𝑅) ≃ L−ge(𝑅), and Σ2 Lge(𝑅) ≃ L−gq(𝑅).
If 𝑅 is in addition 2-torsion free, for instance a Dedekind domain whose fraction field is of characteristic
different from 2, then the canonical maps Ϙ−ge → Ϙ−gs and Ϙgq → Ϙge are equivalences by Remark R.4R.4. We
deduce that for such rings, there are in fact canonical equivalences

Σ2 Lgs(𝑅) ≃ L−gs(𝑅) and Σ2 Lgq(𝑅) ≃ L−gq(𝑅).

The comparison map is compatible with these equivalences, so we deduce that the map Lgq(𝑅) → Lgs(𝑅) is
a 2-fold loop of the map L−gq(𝑅) → L−gs(𝑅). Corollary 1.3.101.3.10 then implies that the maps Lgq

𝑛 (𝑅) → Lgs
𝑛 (𝑅)

and GWq
cl,𝑛(𝑅) → GWs

cl,𝑛(𝑅) are injective for 𝑛 = 𝑑 and an isomorphism for 𝑛 ≥ 𝑑 + 1.

1.3.17. Remark. As described in Definition [II].4.2.264.2.26, there is a canonical non-abelian derived Poincaré
structure Ϙg𝜆𝑀 associated to a generalised form parameter 𝜆 in the sense of Schlichting [Sch19aSch19a] (extending
the classical notion of Bak) on an invertible ℤ-module with involution𝑀 . It then follows from the fact that
Ϙ
g𝜆
𝑀 (𝑃 [0]) is discrete (by definition) that Ϙg𝜆𝑀 is 0-quadratic and 0-symmetric. In particular, the comparison

results of Corollary 1.2.121.2.12 and Corollary 1.3.91.3.9 apply to Ϙg𝜆𝑀 . Depending on 𝜆, the Poincaré structure Ϙg𝜆𝑀
might in fact be 1-symmetric (as is the case for even forms) or 2-symmetric (as is the case for symmetric
forms), or likewise 1-quadratic (as in the case of even forms) or 2-quadratic (as in the case of quadratic
forms). Hence, for a form parameter 𝜆 = (𝑀,𝑄) over a 1-dimensional ring 𝑅, we find that the map
Lg𝜆
𝑛 (𝑅) → Ls

𝑛(𝑅) is injective for 𝑛 = 3 and bijective for 𝑛 ≥ 4. In addition, Lg𝜆
2 (𝑅) is isomorphic to the Witt

group associated to the form parameter (−𝑀, ker(𝑀 → 𝑄)) as follows from Corollary 1.3.41.3.4.

1.3.18. Example. In this example, we show how the surgery methods developed in the previous sections
allow to determine the L-theory Lb(ℤ) = L(Dp(ℤ), Ϙb) investigated first in [DO19DO19] and denoted Lg(𝔸)
therein. The Poincaré structure Ϙb is defined as the pullback

Ϙ
b(𝑋) homℤ(𝑋, 𝜏≥1∕2ℤtC2 )

Ϙ
gs(𝑋) homℤ(𝑋, 𝜏≥0ℤtC2 )

where 𝜏≥1∕2ℤtC2 is the pullback ℤ ×ℤ∕2 𝜏≥0ℤtC2 . We deduce that Ϙb is the Poincaré structure associated
to the Burnside ring form parameter which is given by 𝑄 = ℤ ×ℤ∕2 ℤ and 𝑀 = ℤ, and where the map
𝑀 → 𝑄 is the pair (2, 0). Since the map 𝑀 → 𝑄 is injective, we deduce from Remark 1.3.171.3.17 that the
map Lb

𝑛(ℤ) → Ls
𝑛(ℤ) is an isomorphism for 𝑛 ≥ 2. Here we have used that Ls

3(ℤ) = 0. Likewise, we
may apply Proposition 1.2.291.2.29 to the canonical Poincaré functor (Mod𝜔𝕊 , Ϙ

u) → (Dp(ℤ), Ϙb): In this case,
the map on linear terms to investigate is the map 𝕊 → 𝜏≥1∕2ℤtC2 which is 1-connective. We deduce that
the map Lu

𝑛(𝕊) → Lb
𝑛(ℤ) is an isomorphism for 𝑛 ≤ 0 and a surjection for 𝑛 = 1. We will now show that

the map Lq
1(ℤ) → Lb

1(ℤ) is surjective, showing that Lb
1(ℤ) vanishes. To see this, one may first assume

that an element of Lb
1(ℤ) is represented by (𝑋, 𝑞) with 𝑋 a complex concentrated in degrees [−1, 0]. In

this case, 𝜋0(𝑋) is a finitely generated free module, and one can perform surgery along the canonical map
𝜋0(𝑋) → 𝑋. The result is a Poincaré object (𝑋′, 𝑞′) for ΩϘb with homotopy groups concentrated in degree
−1, and there necessarily a torsion group 𝑇 . On such objects, the form 𝑞′ then lifts to a form for ΩϘq, since
Ωhomℤ(𝑇 [−1], 𝜏≥1∕2ℤtC2 ) has trivial 𝜋0.
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2. L-THEORY OF DEDEKIND RINGS

The goal of this section is to extend Quillen’s localisation-dévissage sequence [Qui73bQui73b, Corollary of
Theorem 5] for Dedekind rings to hermitian K-theory, thereby proving Theorem 77 of the introduction. We
recall that Dedekind rings are commutative regular Noetherian domains of global dimension 1, and the
main example of interest to us are those whose fraction field is a number field. Other notable examples are
discrete valuation rings and rings of functions of smooth affine curves over fields.

To prove the theorem we first construct a Poincaré-Verdier sequence induced by the map from a Dedekind
ring𝑅 to its localisation away from a set 𝑆 of non-zero prime ideals. The functor GW takes such sequences
to cofibre sequences of spectra. Using a dévissage result for symmetric GW-theory we then identify the
fibre term as the sum of GW-spectra of the residue fields 𝑅∕𝔭, where 𝔭 ranges through the set 𝑆.

Results of this type have appeared in the literature from early on. Three- or four-term localisation
sequences for Witt groups appear in the work of Knebusch [Kne70Kne70], Milnor-Husemoller [MH73MH73] and
these are extended to long exact sequences of L-groups by Ranicki [Ran81Ran81, §4.2] and Balmer-Witt groups
in [Bal05Bal05, §1.5.2]. For Grothendieck-Witt groups there are exact sequences due to Karoubi [Kar74Kar74,Kar75Kar75]
as well as Hornbostel-Schlichting [Hor02Hor02,HS04HS04], both under the assumption that 2 is invertible in the ring.

Our results hold with no assumption on invertibility of 2, for the homotopy theoretic symmetric Grothendieck-
Witt spectrum GWs. By the results of the previous section (see Corollary 1.3.141.3.14 and 1.3.151.3.15) the non-
negative homotopy groups of GWs(𝑅) agree with the classical higher Grothendieck-Witt groups, but it is
only GWs(𝑅) which is well-behaved in all degrees, see Remark 2.2.82.2.8.

2.1. The localisation sequence. Let 𝑅 be a Dedekind ring and 𝑆 a set of non-zero prime ideals of 𝑅. We
let 𝑅𝑆 = O(𝑈 ) where O is the structure sheaf of spec(𝑅) and 𝑈 = spec(𝑅) ⧵ 𝑆 is the complement of the
set 𝑆 (in case 𝑆 is infinite 𝑈 is not open in spec(𝑅), and O(𝑈 ) is defined as the colimit of O on the open
subsets of spec(𝑅) containing 𝑈 ). Concretely, one can describe the ring 𝑅𝑆 as follows: For any non-zero
prime ideal 𝔭, the localisation 𝑅(𝔭) at 𝔭 is a discrete valuation ring, and the fraction field 𝐾 of 𝑅 hence
acquires a 𝔭-adic valuation 𝜈𝔭. Then 𝑅𝑆 identifies with the subring of 𝐾 given by all elements 𝑥 ∈ 𝐾 such
that 𝜈𝔭(𝑥) ≥ 0 for all 𝔭 not contained in 𝑆. The ring 𝑅𝑆 can be thought of as the localisation of 𝑅 away
from the set of primes 𝑆. We denote by D

p
𝑆 (𝑅) ⊆ Dp(𝑅) the fibre of the functor Dp(𝑅) → Dp(𝑅𝑆 ). By the

above, it coincides with the full subcategory spanned by those perfect 𝑅-modules whose homotopy groups
are 𝑆-primary torsion modules, which we will also refer to as 𝑆∞-torsion modules.

2.1.1. Example. Let 𝑅 be a Dedekind ring.
i) If 𝑆 consists of all the non-zero prime ideals of 𝑅, then 𝑅𝑆 is the fraction field 𝐾 ,

ii) Given a multiplicative subset 𝑇 ⊂ 𝑅 we may consider the set of primes ideals 𝑆 = {𝔭 | 𝔭 ∩ 𝑇 ≠ ∅}.
Then 𝑅𝑆 = 𝑅[𝑇 −1] is obtained from 𝑅 by inverting the elements of 𝑇 . In particular:

iii) If 𝑆 = {𝔭1,… , 𝔭𝑛} is such that the ideal 𝔭𝑟11 ⋅ ⋯ ⋅ 𝔭𝑟𝑛𝑛 = (𝑥) is a principal ideal, then 𝑅𝑆 = 𝑅[ 1𝑥 ].
These are the cases that we will use most. We warn the reader that, in general, 𝑅𝑆 is not obtained from 𝑅
by inverting a multiplicative subset.

Recall from Definition [IIII].A.4.2A.4.2 that a map of rings 𝜑∶ 𝐴 → 𝐵 is called a derived localisation if the
map 𝐵 ⊗𝐴 𝐵 → 𝐵 from the derived tensor product is an equivalence in D(𝐴). When 𝐵 is flat over 𝐴,
this is equivalent to saying that the multiplication map 𝐵 ⊗U

𝐴 𝐵 → 𝐵 from the underived tensor product
is an isomorphism of ordinary 𝐴-modules. Recall as well that 𝜑 is said to have a perfectly generated fibre
if 𝐼 ∶= f ib[𝐴 → 𝐵] ∈ D(𝐴) can be written as a filtered colimit of perfect 𝐵-torsion complexes, that is,
objects in the fibre of Dp(𝐴) → Dp(𝐵).

2.1.2. Lemma. Let 𝑅 be a Dedekind ring and 𝑆 a set of non-zero prime ideals of 𝑅. Then 𝑅𝑆 is flat over
𝑅 and the map 𝑅 → 𝑅𝑆 is a derived localisation with a perfectly generated fibre.

Proof. To see that 𝑅𝑆 is flat observe that it can be written as a filtered colimit of projective modules

𝑅𝑆 = colim
𝐷∈Div𝑆

𝑅𝐷.

HereDiv𝑆 is the monoid of effective divisors supported on𝑆, that is, formal sums𝐷 =
∑

𝔭 𝑎𝔭𝔭with 𝑎𝔭 ∈ ℕ
such that 𝑎𝔭 = 0 for all but finitely many ideals which are contained in 𝑆, and where for such an effective
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divisor 𝐷 =
∑

𝑎𝔭𝔭 we write

𝑅𝐷 = {𝑥 ∈ 𝐾 | val𝔭(𝑥) ≥ −𝑎𝔭 ∀𝔭} ⊆ 𝐾

for the associated fractional ideal. Since 𝑅𝐷 is projective, this shows that 𝑅𝑆 is flat. In addition, since
Div𝑆 is filtered and the map 𝑅𝐷 ⊗U

𝑅 𝑅𝐷′ → 𝑅𝐷+𝐷′ induced by the multiplication in 𝐾 is an isomorphism,
we also deduce from this description that the multiplication map 𝑅𝑆 ⊗U

𝑅 𝑅𝑆 → 𝑅𝑆 is an isomorphism of
𝑅-modules, so that 𝑅 → 𝑅𝑆 is a derived localisation. Finally, to see that f ib[𝑅 → 𝑅𝑆 ] = 𝑅∕𝑅𝑆 [−1] is a
filtered colimit of perfect 𝑆-torsion complexes we note that

𝑅𝑆∕𝑅 = colim
𝐷∈Div𝑆

𝑅𝐷∕𝑅

where each𝑅𝐷∕𝑅 is perfect (being the cokernel of an injective map of projective modules) and 𝑆∞-torsion:
𝑅𝑆 ⊗𝑅 [𝑅𝐷∕𝑅] = cof[𝑅𝑆 → 𝑅𝑆 ⊗𝑅 𝑅𝐷] = 0. □

Let now 𝑀 be a line bundle (that is, a finitely generated projective module of rank 1) over 𝑅 with an
𝑅-linear involution, which we regard as a ℤ-module with involution over 𝑅 as in Definition R.1R.1. For every
−∞ ≤ 𝑚 ≤ ∞ we may endow Dp(𝑅) with the Poincaré structure Ϙ≥𝑚𝑀 , and Dp(𝑅𝑆 ) with the Poincaré
structure Ϙ≥𝑚𝑀𝑆

associated to the localised line bundle 𝑀𝑆 ∶= 𝑅𝑆 ⊗U
𝑅𝑀 . The extension of scalars is then a

Poincaré functor, see Lemma [II].3.4.33.4.3, so that Dp
𝑆 (𝑅) is closed under the duality of Dp(𝑅) induced by 𝑀

and becomes a Poincaré subcategory, with the restricted Poincaré structure. By abuse of notation, we will
denote this restricted Poincaré structure again by Ϙ≥𝑚𝑀 ∶ D

p
𝑆 (𝑅)

op → S𝑝.

2.1.3. Proposition. Let 𝑅 be a Dedekind ring and 𝑀 a line-bundle over 𝑅 with 𝑅-linear involution. Then
the sequence of Poincaré ∞-categories

(Dp
𝑆 (𝑅), Ϙ

≥𝑚
𝑀 ) ⟶ (Dp(𝑅), Ϙ≥𝑚𝑀 ) ⟶ (Dp(𝑅𝑆 ), Ϙ

≥𝑚
𝑀𝑆

)

is a Poincaré-Verdier sequence. In particular, it induces a fibre sequence of GW and L-spectra.

Proof. The last statement follows from the first, since GW and L are Verdier-localising functors, which was
proven in Corollary [IIII].4.4.154.4.15 and Corollary [IIII].4.4.64.4.6. We now wish to apply Proposition [IIII].1.4.81.4.8. For
this we need to check that𝑀 is compatible with the localisation𝑅 → 𝑅𝑆 in the sense of Definition [IIII].1.4.31.4.3,
which follows from the fact that 𝑅 and 𝑅𝑆 are commutative and 𝑀 is an 𝑅 ⊗ 𝑅-module through the
multiplication map of 𝑅, see Example [IIII].1.4.41.4.4(1). Furthermore, by Lemma 2.1.22.1.2, 𝑅𝑆 is a flat 𝑅-module.
In addition, the map K0(𝑅) → K0(𝑅𝑆 ) is surjective: As filtered colimits along surjections are surjections,
it suffices to argue this in the case where 𝑆 is finite. In this case, 𝑅𝑆 is itself a Dedekind ring, so it suffices
to argue that the map Pic(𝑅) → Pic(𝑅𝑆 ) is surjective. This follows from the observation that Pic(𝑅) and
Pic(𝑅𝑆 ) are respectively the quotients of the free abelian groups generated by the prime ideals of 𝑅 and
𝑅𝑆 . The proposition then follows from Lemma 2.1.22.1.2. □

We now restrict our attention to the case of the symmetric Poincaré structure Ϙs𝑀 = Ϙ≥−∞𝑀 and aim to
describe more explicitly the shifted Poincaré structure (Ϙs𝑀 )[1] = Ϙs𝑀[1] restricted to D

p
𝑆 (𝑅).

2.1.4. Lemma.
i) The canonical t-structure on D(𝑅) restricts to a t-structure on D

p
𝑆 (𝑅). Its heart Dp

𝑆 (𝑅)
♡ = Torf𝑆 (𝑅)

is the abelian category of finitely generated 𝑆∞-torsion 𝑅-modules.
ii) For 𝑇 ∈ D

p
𝑆 (𝑅)

♡, the space Ω∞
Ϙ
s
𝑀[1](𝑇 ) is discrete and naturally isomorphic to the abelian group of

symmetric 𝑀𝑆∕𝑀-valued bilinear forms on 𝑇 .
iii) For 𝑇 ∈ D

p
𝑆 (𝑅)

♡, we have D𝑀[1]𝑇 = Hom𝑅(𝑇 ,𝑀𝑆∕𝑀). In particular, D𝑀[1] restricts to a duality
on the heart Dp

𝑆 (𝑅)
♡.

Proof. Since 𝑅 and 𝑅𝑆 have global dimension ≤ 1, the perfect derived categories Dp(𝑅) and Dp(𝑅𝑆 )
inherit the canonical t-structures from the respective unbounded derived categories. By Lemma 2.1.22.1.2, 𝑅𝑆
is flat over𝑅. Therefore, the localisation functorDp(𝑅) → Dp(𝑅𝑆 ) preserves both connective and truncated
objects and hence commutes with truncations and connective covers. As a result, its kernelDp

𝑆 (𝑅) ⊆ Dp(𝑅)
is closed under truncation and connective covers, and so inherits a t-structure from Dp(𝑅), i.e. the inclusion
inclusion D

p
𝑆 (𝑅) ⊆ Dp(𝑅) commutes with truncations and connective covers. The heart of this restricted
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t-structure is then the abelian category D
p
𝑆 (𝑅) ∩ D(𝑅)♡ = Torf𝑆 (𝑅) of finitely generated 𝑆∞-torsion 𝑅-

modules, showing i)i). For ii)ii), we consider the short exact sequence of 𝑅-modules

0 →𝑀 →𝑀𝑆 →𝑀𝑆∕𝑀 → 0

which induces a fibre sequence of Poincaré structures Ϙs𝑀 → Ϙs𝑀𝑆
→ Ϙs𝑀𝑆∕𝑀

onDp(𝑅). Now, Ϙs𝑀𝑆
vanishes

on D
p
𝑆 (𝑅), so the natural transformation Ϙs𝑀𝑆∕𝑀

→ Ϙs𝑀[1] restricts to an equivalence on D
p
𝑆 (𝑅). We then

obtain a natural equivalence

Ϙ
s
𝑀[1](𝑇 ) ≃ Ϙ

s
𝑀𝑆∕𝑀

(𝑇 ) = hom𝑅(𝑇 ⊗𝑅 𝑇 ,𝑀𝑆∕𝑀)hC2

for 𝑇 ∈ D
p
𝑆 (𝑅). Since 𝑀𝑆∕𝑀 is discrete, the last mapping spectrum is coconnective as soon as 𝑇 is

connective. In particular, its underlying space is discrete when 𝑇 , belongs to the heart. In this case, we have
the equivalence

Ω∞ hom𝑅(𝑇 ⊗𝑅 𝑇 ,𝑀𝑆∕𝑀)hC2 ≃ Hom𝑅(𝑇 ⊗U
𝑅 𝑇 ,𝑀𝑆∕𝑀)C2

where the latter term is the abelian group of symmetric 𝑀𝑆∕𝑀-valued forms on 𝑇 . Finally, to see iii)iii), we
again use the above short exact sequence of modules to find a fibre sequence

hom𝑅(𝑋,𝑀𝑆 ) ⟶ hom𝑅(𝑋,𝑀𝑆∕𝑀) ⟶ hom𝑅(𝑋,𝑀[1]) = D𝑀[1]𝑋

for 𝑋 ∈ Dp(𝑅). We therefore find that for 𝑇 ∈ D
p
𝑆 (𝑅), the first term above vanishes, and we obtain an

equivalence D𝑀[1]𝑇 = hom𝑅(𝑇 ,𝑀𝑆∕𝑀). It then suffices to argue that this mapping spectrum is discrete
if 𝑇 lies in the heart Dp

𝑆 (𝑅)
♡. To see this, we may assume that 𝑆 is the set of all prime ideals, in which case

𝑅𝑆 is the field of fractions of 𝑅. Then we find that 𝑀𝑆∕𝑀 is a divisible and hence injective 𝑅-module
[KSS08KSS08], showing that D𝑀[1]𝑇 is indeed discrete. □

Using the above, we would like to give an explicit description of the boundary map

𝜕0 ∶ Ls
0(𝑅𝑆 ;𝑀𝑆 ) ⟶ L−1(Dp(𝑅)𝑆 , Ϙs𝑀 ) ≅ L0(Dp(𝑅)𝑆 , Ϙs𝑀[1])

associated to the fibre sequence in L-theory arising from the Poincaré-Verdier sequence of Proposition 2.1.32.1.3.
By Corollary 1.3.41.3.4 any class inLs

0(𝑅𝑆 ;𝑀𝑆 ) can be represented by a finitely generated projective𝑅𝑆 -module
𝑉 equipped with a unimodular 𝑀𝑆 -valued symmetric form 𝑏. Recall that an 𝑅-lattice 𝑃 ⊆ 𝑉 is a finitely
generated projective𝑅-submodule of 𝑉 inducing an isomorphism𝑅𝑆⊗U

𝑅𝑃 → 𝑉 . We note that such lattices
always exist. Indeed, any such 𝑉 is tensored up from a finitely generated projective 𝑅𝑆′ -module 𝑉 ′ for 𝑆′

a finite set of primes. Then 𝑅𝑆′ is a Dedekind ring so that 𝑉 ′ splits as a direct sum of line bundles, and
each such line bundle is tensored up from an 𝑅-line bundle since the map Pic(𝑅) → Pic(𝑅𝑆 ) is surjective.
Now any 𝑅-lattice 𝑃 ⊆ 𝑉 has a dual 𝑅-lattice 𝑃 ∗ ⊆ 𝑉 with respect to 𝑏, spanned by those vectors 𝑣 ∈ 𝑉
such that 𝑏(𝑣, 𝑢) lies in 𝑀 for every 𝑢 ∈ 𝑃 . We will say that an 𝑅-lattice 𝑃 ⊆ 𝑉 is 𝑅-integral if 𝑃 ⊆ 𝑃 ∗.
We note that any 𝑅-lattice can be made integral by suitably shrinking it, and so any such (𝑉 , 𝑏) admits an
integral 𝑅-lattice.

We then observe that 𝑇 ∶= 𝑃 ∗∕𝑃 is an object of Dp
𝑆 (𝑅)

♡ and carries an induced 𝑀𝑆∕𝑀-valued sym-
metric form 𝑐 given by the formula

𝑐([𝑣], [𝑢]) = [𝑏(𝑣, 𝑢)] ∈𝑀𝑆∕𝑀.

This form is well-defined since 𝑏(𝑢, 𝑣) ∈ 𝑀 whenever 𝑢, 𝑣 are elements of 𝑃 ∗ and at least one of them
is contained in 𝑃 ⊆ 𝑃 ∗, and defines a Hermitian form for (Dp

𝑆 (𝑅), Ϙ
s
𝑀[1]) by Lemma 2.1.42.1.4 ii)ii). With this

notation at hand, we have the following:

2.1.5. Proposition. Let 𝑉 be a finitely generated projective 𝑅𝑆 -module equipped with a unimodular sym-
metric form 𝑏∶ 𝑉 × 𝑉 → 𝑀𝑆 , let 𝑃 ⊆ 𝑉 be an integral 𝑅-lattice and 𝑇 = 𝑃 ∗∕𝑃 as above. Then we
have

𝜕0[𝑉 , 𝑏] = [𝑇 , 𝑐] ∈ L0(D
p
𝑆 (𝑅), Ϙ

s
𝑀[1]).

Proof. We follow the description of the boundary map given in Proposition [IIII].4.4.84.4.8. The first step is to lift
(𝑉 , 𝑏) to a hermitian object in Dp(𝑅), which we do by viewing the restriction 𝑏𝑃 ∶= 𝑏|𝑃 as an 𝑀-valued
hermitian form on 𝑃 , so that the pair (𝑃 , 𝑏𝑃 ) determines a hermitian lift of (𝑉 , 𝑏). The bilinear part of 𝑏
then identifies the dual lattice 𝑃 ∗ ⊆ 𝑉 with D𝑀𝑃 , such that (𝑏𝑃 )♯ is given by the inclusion 𝑃 ⊆ 𝑃 ∗. As
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in Proposition [IIII].4.4.84.4.8, we then view (𝑃 , 𝑏𝑃 ) as a surgery datum on 0 with respect to Ϙs𝑀[1]. Carrying out
the surgery yields a Poincaré Ϙs𝑀[1]-form 𝑐 on 𝑇 ∶= cof[𝑃 → D𝑀𝑃 ] = 𝑃 ∗∕𝑃 , and one has

𝜕0[𝑉 , 𝑏] = [𝑇 , 𝑐] ∈ L0(D
p
𝑆 (𝑅), Ϙ

s
𝑀[1]).

We would now like to unwind the definitions in the surgery to obtain an explicit description of 𝑐 in terms
of 𝑏. For this, it will be convenient to introduce an auxiliary datum as follows. Suppose given a hermitian
structure Φ on Dp(𝑅) which vanishes on D

p
𝑆 (𝑅), and which is equipped with a natural transformation

Ϙ
s
𝑀 ⇒ Φ. Write Φ′ = cof[Ϙs𝑀 ⇒ Φ] and consider the commutative diagram

Ϙ
s
𝑀 (𝑇 ) Ϙ

s
𝑀 (𝑃 ∗) Ϙ

s
𝑀 (𝑃 ) ×hom(𝑃 ,𝑃 ∗) hom(𝑃 ∗, 𝑃 ∗)

0 Φ(𝑇 ) Φ(𝑃 ∗) Φ(𝑃 ) ×BΦ(𝑃 ,𝑃 ) BΦ(𝑃 ∗, 𝑃 )

Ϙ
s
𝑀[1](𝑇 ) Φ′(𝑇 ) Φ′(𝑃 ∗) Φ′(𝑃 ) ×BΦ′ (𝑃 ,𝑃 ) BΦ′ (𝑃 ∗, 𝑃 )

≃ ≃

≃

whose rows and columns are fibre sequences by Corollary [II].1.1.211.1.21. The pair (𝑏𝑃 , id𝑃 ∗ ) then canonically
refines to a point (𝑏𝑃 , id𝑃 ∗ , 𝜂) in the (infinite loop space of the) top right term above, where 𝜂 is the identity
homotopy from (𝑏𝑃 )♯ to itself in hom(𝑃 , 𝑃 ∗). On the other hand, since Φ(𝑇 ) = 0, the image of (𝑏𝑃 , id𝑃 ∗ , 𝜂)
in the middle right term uniquely lifts to a form 𝑏𝑃 ∗ ∈ Ω∞Φ(𝑃 ∗). Let [𝑏𝑃 ∗ ] ∈ Ω∞Φ′(𝑃 ∗) be the image
of 𝑏𝑃 ∗ . Then the data of (𝑏𝑃 , id𝑃 ∗ , 𝜂) determines a null homotopy of the image of [𝑏𝑃 ∗ ] in the bottom right
fibre product, and hence refines [𝑏𝑃 ∗ ] to a Φ′-form 𝑐 on 𝑇 , which we may identify with a Ϙs𝑀[1]-form on 𝑇 .

When Φ = 0 this amounts to the usual procedure for computing the resulting form 𝑐 on the trace 𝑇 of
surgery along (𝑃 , 𝑏𝑃 ) → 0. On the other hand, this construction is natural in Φ, and so any map between
two hermitian structures under Ϙs𝑀 vanishing on D

p
𝑆 (𝑅) determines an identification between the resulting

forms 𝑐. In other words, to compute the form 𝑐 we may choose Φ to our convenience. Let us hence choose Φ
to be Ϙs𝑀𝑆

, considered as a hermitian structure on Dp(𝑅), so that Φ′ = Ϙs𝑀𝑆∕𝑀
. In this case we may identify

𝑏𝑃 ∗ above with the restriction 𝑏𝑃 ∗ ∶= 𝑏|𝑃 ∗ of the 𝑀𝑆 -valued form 𝑏 to 𝑃 ∗ ⊆ 𝑉 . The 𝑀𝑆∕𝑀-valued form
[𝑏𝑃 ∗ ] on 𝑃 ∗ is then simply the form which sends 𝑣, 𝑢 ∈ 𝑃 ∗ to the class [𝑏(𝑣, 𝑢)] ∈ 𝑀𝑆∕𝑀 of the element
𝑏(𝑣, 𝑢) ∈𝑀𝑆 , and the descended form 𝑐 on 𝑇 is given by the desired explicit formula. □

2.2. Dévissage. Let again 𝑅 be a Dedekind ring, 𝑆 a set of non-zero prime ideals of 𝑅 and 𝑀 a line
bundle over 𝑅. In general, the objective of dévissage is to identify the Grothendieck-Witt and L-spectra of
the Poincaré ∞-category (Dp

𝑆 (𝑅), Ϙ
s
𝑀 ) in terms of those of the residue fields 𝔽𝔭 ∶= 𝑅∕𝔭 for 𝔭 ∈ 𝑆. To

establish this, we begin by refining the restriction of scalars functor to a Poincaré functor.
We recall that for a ring homomorphism 𝑓 ∶ 𝐴→ 𝐵, the extension of scalars functor 𝑓! ∶ D(𝐴) → D(𝐵)

is left adjoint to the restriction of scalars functor 𝑓 ∗ ∶ D(𝐵) → D(𝐴), which admits a further right adjoint
𝑓∗ ∶ D(𝐴) → D(𝐵). If 𝐵 is moreover perfect as an 𝐴-module (that is, it admits a finite resolution by
finitely generated projective 𝐴-modules), then 𝑓 ∗ restricts to a functor 𝑓 ∗ ∶ Dp(𝐵) → Dp(𝐴) on perfect
objects. Let 𝑀 and 𝑁 be invertible ℤ-modules with involution, respectively over 𝐴 and 𝐵. Then any map
Ψ∶ (𝑓 ⊗ 𝑓 )∗(𝑁) → 𝑀 induces a hermitian structure on the restriction functor 𝑓 ∗ given by the natural
transformation

Ϙ
s
𝑁 (𝑋) = hom𝐵⊗𝐵(𝑋 ⊗𝑋,𝑁)hC2 ⟶ hom𝐴⊗𝐴((𝑓 ⊗ 𝑓 )∗(𝑋 ⊗𝑋), (𝑓 ⊗ 𝑓 )∗𝑁)hC2 ⟶

hom𝐴⊗𝐴(𝑓 ∗(𝑋)⊗ 𝑓 ∗(𝑋), (𝑓 ⊗ 𝑓 )∗𝑁)hC2
Ψ∗
⟶ hom𝐴⊗𝐴(𝑓 ∗(𝑋)⊗ 𝑓 ∗(𝑋),𝑀)hC2 = Ϙs𝑀 (𝑓 ∗(𝑋)).

2.2.1. Lemma. In the notation above, the hermitian functor (𝑓 ∗, 𝜓)∶ (Dp(𝐵), Ϙs𝑁 ) → (Dp(𝐴), Ϙs𝑀 ) is
Poincaré if and only if the map 𝑁 → 𝑓∗(𝑀) induced by Ψ by restricting to one of the 𝐴-module struc-
tures is an equivalence in D(𝐵).

Proof. SinceDp(𝐵) is generated by𝐵 via finite colimits and retracts it will suffice to show that the associated
natural transformation

𝑓 ∗D(𝑋) ⟶ D𝑓 ∗(𝑋)
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evaluates to an equivalence on𝑋 = 𝐵. Unwinding the definitions, the above map for𝑋 = 𝐵 identifies with
the map 𝑓 ∗𝑁 → hom𝐴(𝑓 ∗𝐵,𝑀) = 𝑓 ∗𝑓∗𝑀 which is the image under 𝑓 ∗ of 𝛾 ∶ 𝑁 → 𝑓∗𝑀 . Since 𝑓 ∗ is
conservative this image is an equivalence if and only if 𝛾 is an equivalence. □

Now suppose that 𝔭 ⊆ 𝑅 is a non-zero prime ideal in a Dedekind ring, and let 𝑝∶ 𝑅 → 𝔽𝔭 ∶= 𝑅∕𝔭 be
the quotient map. We note that 𝔭 is a rank 1 projective module and hence is⊗-invertible, where the inverse
is given by the dual 𝔭−1 ≃ hom𝑅(𝔭, 𝑅), which in turn can also be realized as the fractional ideal

𝔭−1 = {𝑥 ∈ 𝑅 | ∀𝑎 ∈ 𝔭 we have 𝑎𝑥 ∈ 𝑅} ⊆ 𝑅,

see [SP18SP18, Tag 0AUW]. We find that 𝔽𝔭 is perfect as an𝑅-module, as it is represented by the chain complex
[𝔭 → 𝑅] with 𝔭 in degree 1 and 𝑅 in degree 0. Let us then consider the adjunction

𝑝∗ ∶ D(𝔽𝔭) ⟂ D(𝑅) ∶𝑝∗

and note that 𝑝∗ preserves compact objects since 𝑝∗(𝔽𝔭) is compact. It follows that 𝑝∗ preserves filtered
colimits, and since it is exact it in fact preserves all colimits. We recall that 𝑝∗ is given by the formula

𝑝∗(𝑋) = hom𝑅(𝑝∗𝔽𝔭, 𝑋)

regarded as an 𝔽𝔭-module via the functoriality in the first variable. We recall that𝑀 is assumed to be a line
bundle over 𝑅.

2.2.2. Lemma. Let 𝔭 ⊆ 𝑅 be a non-zero prime ideal in a Dedekind ring and let 𝑝∶ 𝑅 → 𝔽𝔭 be the quotient
map. Then there is a canonical equivalence

𝑝∗𝑀 ≃ (𝔭−1𝑀∕𝑀)[−1].

In addition, any choice of a uniformiser for 𝔭 determines an isomorphism (𝔭−1𝑀∕𝑀) ≅𝑀∕𝔭𝑀 = 𝑝!𝑀 .

Proof. Applying the functor hom𝑅(−,𝑀) to the fibre sequence 𝔭 → 𝑅 → 𝔽𝔭 we obtain a fibre sequence

𝑝∗𝑝∗(𝑀) ⟶𝑀 ⟶ 𝔭−1𝑀,

and consequently a distinguished equivalence

𝑝∗𝑝∗(𝑀)[1] ≃ 𝔭−1𝑀∕𝑀

of 𝑅-modules. The 𝑅-module structure on 𝔭−1𝑀∕𝑀 a priori descends to an 𝔽𝑝-module structure, and one
obtains an equivalence 𝑝∗(𝑀)[1] ≃ 𝔭−1𝑀∕𝑀 of 𝔽𝑝-modules, since 𝑝∗ is fully faithful on discrete modules.
To see the second part, choose a 𝔭-uniformiser 𝜋, that is, an element of 𝐾 whose 𝔭-valuation is exactly 1.
Then 𝜋 belongs to the local ring𝑅(𝔭) ⊆ 𝐾 , and generates its valuation ideal 𝔭̃ ∶= 𝑅(𝔭)𝔭 ⊆ 𝑅(𝔭) there. Since
𝑀(𝔭) is flat over 𝑅 the induced map 𝔭−1𝑀∕𝑀 → 𝔭̃−1𝑀(𝔭)∕𝑀(𝔭) is an isomorphism. Multiplication by 𝜋
then induces the claimed isomorphism

𝔭̃−1𝑀(𝔭)∕𝑀(𝔭) ≅𝑀(𝔭)∕𝔭̃𝑀 ≅ 𝑝!(𝑀). □

2.2.3. Corollary. Let 𝔭 ⊆ 𝑅 be a non-zero prime ideal in a Dedekind ring and let 𝑝∶ 𝑅→ 𝔽𝔭 be the quotient
map. For any line bundle 𝑀 over 𝑅, the restriction of scalars functor 𝑝∗ ∶ Dp(𝔽𝔭) → Dp(𝑅) canonically
refines to a Poincaré functor

(Dp(𝔽𝔭), Ϙs𝑝∗𝑀 ) ⟶ (Dp
𝑆 (𝑅), Ϙ

s
𝑀 ).

Proof. We view𝑀 and 𝑝∗𝑀 as modules over𝑅⊗𝑅 and 𝔽𝔭⊗𝔽𝔭 via the multiplication maps, respectively.
By Lemma 2.2.22.2.2 𝑝∗𝑀 is in particular an invertible 𝔽𝔭-module. We may therefore apply Lemma 2.2.12.2.1 to the
unit of the adjunction 𝑝∗𝑝∗(𝑀) →𝑀 to obtain a hermitian structure on the restriction of scalars functor

(Dp(𝔽𝔭), Ϙs𝑝∗𝑀 ) ⟶ (Dp(𝑅), Ϙs𝑀 )

which is Poincaré again by Lemma 2.2.12.2.1. It then suffices to observe that the image of the functor 𝑝∗ is
contained in the subcategory D

p
𝑆 (𝑅) of 𝑆-torsion modules. □
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2.2.4. Theorem (Dévissage). Let 𝑅 be a Dedekind ring, 𝑆 a set of non-zero prime ideals of 𝑅, and 𝑀 a
line bundle over 𝑅 with 𝑅-linear involution. Then for every 𝑚 ∈ ℤ the direct sum Poincaré functor

(7) 𝜓𝑆 ∶ ⊕
𝔭∈𝑆

(Dp(𝔽𝔭), (Ϙs𝑝∗𝑀 )[𝑚]) ⟶ (Dp
𝑆 (𝑅), (Ϙ

s
𝑀 )[𝑚])

induces a canonical equivalence on algebraic K-theory, GW-theory and L-theory spectra.

Proof. First, note that by the fibre sequence of Corollary [IIII].4.4.144.4.14, it will be enough to prove the theorem
for algebraic K-theory and L-theory. Second, both sides of 𝜓𝑆 depend on 𝑆 in a manner that preserves
filtered colimits. More specifically, if we write 𝑆 as a filtered colimit 𝑆 = colim𝑆′⊆𝑆,|𝑆|<∞ 𝑆′ of its finite
subsets then the direct sum on the left hand side of (77) is the colimit of the corresponding finite direct sums,
while on the right hand side the full subcategory D

p
𝑆 (𝑅) ⊆ Dp(𝑅) is the union of all the full subcategories

Dp(𝑅)𝑆′ for finite 𝑆′ ⊆ 𝑆. Since both algebraic K-theory and L-theory commute with filtered colimits we
may reduce to the case where 𝑆 is finite.

In this case, the left hand side of (77) can also be written as the product of Dp(𝔽𝔭) for varying 𝔭 ∈ 𝑆
(recall that Catp∞ is semi-additive, see Proposition [II].6.1.76.1.7). In addition, each Dp(𝔽𝔭), being the perfect
derived category of a field, supports a t-structure inherited from D(𝔽𝔭), and so we can endow the left hand
side of (77) with the product of the corresponding t-structures. The heart of this product t-structure is then
the direct sum⊕𝔭∈𝑆Vect(𝔽𝔭) where Vect(𝔽𝔭) is the abelian category of finite dimensional 𝔽𝔭-vector spaces.
We can also identify it with the category of finitely generated modules over the product ring

∏

𝔭∈𝑆 𝔽𝔭. For
the right hand side of (77), Lemma 2.1.42.1.4 tells us that Dp

𝑆 (𝑅) also carries a t-structure, whose heart is the
category Torf𝑆 (𝑅) of finitely generated 𝑆∞-torsion 𝑅-modules. Now since (77) is induced by the various
restriction functors 𝑝∗ ∶ Dp(𝔽𝔭) → Dp(𝑅) it preserves connective and truncated objects with respect to the
t-structures just discussed. The functor

(8) ⊕
𝔭∈𝑆

Vect(𝔽𝔭) ⟶ Torf𝑆 (𝑅)

induced by (77) on the respective hearts is then fully-faithful (even though (77) itself is not fully-faithful) and
can be identified with the inclusion of the full subcategory of finitely generated 𝑆-torsion modules inside
all finitely generated 𝑆∞-torsion modules, i.e. with the full subcategory of semi-simple objects inside the
abelian category Torf𝑆 (𝑅). By the main result of Barwick [Bar15Bar15] the inclusion of hearts induces an equiva-
lence on algebraicK-theory spectra on both the domain and codomain of (77). The desired claim for algebraic
K-theory is hence equivalent to saying that the inclusion of abelian categories (88) induces an equivalence
on algebraic K-theory, which in turn follows from Quillen’s classical dévissage theorem [Qui73bQui73b, Theorem
§5.4].

We will now show that (77) induces an equivalence on L-theory. Recall that by Corollary R.10R.10, L-theory
supports natural equivalences L(C, Ϙ[1]) ≃ ΣL(C, Ϙ). It will thus suffice to prove the claim for 𝑚 = 1 in
which case the duality on Dp(𝔽𝑝) is given by D𝑝∗(𝑀)[1] ≃ D𝑝!(𝑀) by Lemma 2.2.22.2.2. Now since each 𝔽𝔭
has global dimension 0 the duality D𝑝!𝑀 on Dp(𝔽𝔭) maps 0-connective objects to 0-truncated objects and
vice versa. The same hence holds for the product duality on

∏

𝔭∈𝑆 Dp(𝔽𝔭) with respect to the product t-
structure. This also holds for the Poincaré ∞-category (Dp

𝑆 (𝑅), (Ϙ
s
𝑀 )[1]) by Lemma 2.1.42.1.4. Hence for both

sides of (77) we are in the situation of Corollary 1.3.81.3.8, and so to finish the proof it will suffice to show that (88)
induces an isomorphism on symmetric and anti-symmetric Witt groups. This follows from the dévissage
result of [QSS79QSS79, Corollary 6.9, Theorem 6.10]. □

The combination of the classical dévissage and localisation theorems of Quillen give rise to the fibre
sequence of K-theory spectra

⊕
𝔭∈𝑆

K(𝔽𝔭) ⟶ K(𝑅) ⟶ K(𝑅𝑆 ).

From Theorem 2.2.42.2.4 we obtain the corresponding sequences for the symmetric L and GW-spectra.
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2.2.5. Corollary (Localisation-dévissage). Under the assumptions of Theorem 2.2.42.2.4, the restriction and
localisation functors yield canonical fibre sequences of spectra

⊕
𝔭∈𝑆

GW(𝔽𝔭; (Ϙs𝑝∗𝑀 )[𝑚]) GW(𝑅; (Ϙs𝑀 )[𝑚]) GW(𝑅𝑆 ; (Ϙs𝑀𝑆
)[𝑚])

⊕
𝔭∈𝑆

L(𝔽𝔭; (Ϙs𝑝∗𝑀 )[𝑚]) L(𝑅; (Ϙs𝑀 )[𝑚]) L(𝑅𝑆 ; (Ϙs𝑀𝑆
)[𝑚])

for every 𝑚 ∈ ℤ.

2.2.6. Remark. Making use of Lemma 2.2.22.2.2, after making choices of uniformisers of the ideals 𝔭 in 𝑆, one
obtains the slightly more familiar fibre sequence

⊕
𝔭∈𝑆

GW(𝔽𝔭; (Ϙs𝑝!𝑀 )[𝑚−1]) GW(𝑅; (Ϙs𝑀 )[𝑚]) GW(𝑅𝑆 ; (Ϙs𝑀𝑆
)[𝑚])

and likewise for L-theory. We now briefly remark on the naturality of this sequence. Given a map of
Dedekind rings 𝑓 ∶ 𝑅 → 𝑅′, a line bundle 𝑀 on 𝑅, and a set of prime ideals 𝑆 in 𝑅, we may set 𝑀 ′ =
𝑅′⊗𝑅𝑀 and 𝑆′ the set of primes whose preimage is contained in 𝑆. There is then the following canonical
commutative square

GW(𝑅; (Ϙs𝑀 )[𝑚]) GW(𝑅𝑆 ; (Ϙs𝑀𝑆
)[𝑚])

GW(𝑅′; (Ϙs𝑀 ′ )[𝑚]) GW(𝑅′
𝑆′ ; (Ϙs𝑀 ′

𝑆′
)[𝑚])

which induces a map on horizontal fibres:

⊕
𝔭∈𝑆

GW(𝔽𝔭; (Ϙs𝑝!𝑀 )[𝑚−1]) ⟶ ⊕
𝔭′∈𝑆′

GW(𝔽𝔭′ ; (Ϙs𝑝′!𝑀 ′ )
[𝑚−1]).

Let us describe this map in the case where𝑆 = {𝔭} consists of a single prime. For any prime 𝔭′ in𝑆′, there is
then an induced map 𝜅 ∶ 𝔽𝔭 → 𝔽𝔭′ between the corresponding residue fields, and 𝜅!𝑝!𝑀 ≃ 𝑝′!𝑓!𝑀 = 𝑝′!𝑀

′.
However, the map induced on fibres

GW(𝔽𝔭; (Ϙs𝑝!𝑀 )[𝑚−1]) ⟶ GW(𝔽𝔭′ ; (Ϙs𝑝′!𝑀 ′ )
[𝑚−1])

is not in general the one induced by the map 𝜅 and the mentioned equivalence 𝜅!𝑝!𝑀 ≃ 𝑝′!𝑀
′ unless a

uniformiser for 𝔭 is sent to a uniformiser of 𝔭′ under the map 𝑅 → 𝑅′. An example where this indeed
fails is the map ℤ → ℤ[𝑖] from the integers to the Gaussian integers with 𝔭 = (2). In this case, 2 is not a
uniformiser of the prime ideal (1 + 𝑖) in ℤ[𝑖] which is the single prime ideal containing 2. One can then
show that the induced map on K-theory between the residue fields is not the identity. Likewise, using for
instance Lemma 2.2.92.2.9 below, one can also see that the induced map on L-theory between the residue fields
is not the identity, but in fact the zero map.

2.2.7. Remark. A variant of Corollary 2.2.52.2.5 for L-theory of short complexes in non-negative degrees
(which, for Dedekind rings, coincides with symmetric L-theory in non-negative degrees by Theorem 1.2.221.2.22
and Corollary 1.3.141.3.14), was proven by Ranicki in [Ran81Ran81, §4.2]. For Grothendieck-Witt theory, Hornbostel
and Schlichting prove a dévissage statement and obtain a localisation sequence of the type of Corollary 2.2.52.2.5
under the assumption that 2 is a unit in𝑅, see [Hor02Hor02], [HS04HS04]. Apart from the announcement [Sch19bSch19b, The-
orem 3.2] which provides the above fibre sequence for GW after passing to connective covers, we are
not aware of any previous results in the literature for Grothendieck-Witt spaces, along the lines of Corol-
lary 2.2.52.2.5, for rings in which 2 is not invertible.

2.2.8. Remark. The dévissage result above is a special feature of the symmetric Poincaré structure: It is the
only among the Poincaré structures Ϙ≥𝑚𝑀 for which this result holds at the spectrum level (not just in a range
of degrees). Indeed, to see this it suffices, by Corollary 1.2.121.2.12, to argue that dévissage fails for quadratic
L-theory. For an explicit example, one can note that the maps

ΩLq(𝔽2) ⟶ Lq(ℤ) ⟶ Lq(ℤ[ 12 ])
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cannot be part of a fibre sequence, for instance because it would imply that Lq
2(ℤ) = 0, which is not the case.

Here, we use that Lq
2(ℤ[

1
2 ]) ≅ Ls

2(ℤ[
1
2 ]) = 0, which is of course well-known, but see also Corollary 2.3.22.3.2

below, as well as the vanishing of Lq
3(𝔽2), see Remark 1.3.51.3.5.

However, dévissage in quadratic L-theory fails only at dyadic primes, that is at those primes which
contain the ideal (2). More precisely, if no prime in 𝑆 is dyadic, then the localisation-dévissage sequence
exists also in quadratic L-theory; see Remark 2.3.152.3.15 for details. For instance, it can be used to calculate
Lq(ℤ[ 1𝑝 ]) for odd primes 𝑝.

Shifting the L-theory fibre sequence of Corollary 2.2.52.2.5, or rather the version discussed in Remark 2.2.62.2.6,
once to the right and choosing uniformisers for all non-zero primes, we obtain a fibre sequence

Ls(𝑅) ⟶ Ls(𝐾)
𝜕

⟶ ⊕
𝔭
Ls(𝔽𝔭)

In the next section, we aim to determine the L-groups of Dedekind rings. In order to do so, we will need
to make the effect of the map 𝜕 on 𝜋0 explicit. Clearly, it suffices to describe the composite of 𝜕 with the
projection to Ls(𝔽𝔭) for each prime 𝔭 of 𝑅. By naturality of the dévissage theorem and the localisation
sequence, to describe this composition we may replace 𝑅 by its localisation 𝑅(𝔭) which is a local Dedekind
ring and hence a discretely valued ring, as the choice of uniformiser for 𝔭 is (by definition) also a uniformiser
for 𝔭, viewed as prime ideal in𝑅(𝔭). Without loss of generality, we may hence assume that𝑅was a discretely
valued ring to begin with. Let 𝜋 be a uniformiser of the maximal ideal of𝑅, so that every non-zero element
in 𝐾 is uniquely of the form 𝜋𝑖𝑢 for some unit 𝑢 in 𝑅. Clearly, it suffices to describe the map

𝜕0 ∶ Ls
0(𝐾) → Ls

0(𝔽𝔭)

on generators of the L-group, which are given by the forms ⟨𝑥⟩ = (𝐾, 𝑥) for units 𝑥 of 𝐾 , where we
have identified canonically 𝜋0(Ϙs(𝐾)) with 𝐾 . Indeed, if the characteristic of 𝐾 is not 2, then every form
itself is isomorphic to a diagonal form. If the characteristic is 2, then any unimodular form is the sum of
a diagonalisable form and one which admits a Lagrangian, see [MH73MH73, I §3]. By a change of basis, one
finds the relation ⟨𝑥⟩ = ⟨𝑥𝑦2⟩ for any other unit 𝑦. We may thus suppose without loss of generality that 𝑥
is either of the form 𝜋𝑢 or of the form 𝑢, again for 𝑢 a unit in 𝑅. By exactness of the localisation-dévissage
sequence, we have 𝜕0⟨𝑢⟩ = 0, so it remains to describe 𝜕0⟨𝜋𝑢⟩.

2.2.9. Lemma. Let 𝑅 be a local Dedekind ring with maximal ideal 𝔭, residue field 𝔽𝔭 = 𝑅∕𝔭 and fraction
field 𝐾 , and let 𝜋 be a uniformiser for 𝔭, and 𝑢 ∈ 𝑅× a unit. Then we have 𝜕0⟨𝜋𝑢⟩ = ⟨[𝑢]⟩, where [𝑢]
denotes the image of 𝑢 under the map 𝑅× → 𝔽×

𝔭 .

Proof. Let 𝑎 ∈ 𝔭 be a generator of 𝔭, considered as a 1-dimensional form ⟨𝑎⟩ = (𝐾, 𝑎). Write 𝔭−1 = (𝑎−1)
for the inverse fractional ideal of 𝔭. For this proof, let 𝜕̄0 denote the map of Proposition 2.1.52.1.5. We will show
the following statements.

i) The class 𝜕̄0⟨𝑎⟩ ∈ L0(D
p
𝔭(𝑅), Ϙ

s
𝑅[1]) is represented by the 𝔭-torsion module 𝑇 ∶= 𝔭−1∕𝑅 ∈ D

p
𝔭(𝑅)

♡,
equipped with the symmetric 𝐾∕𝑅-valued pairing

𝑐𝑎 ∶ 𝑇 × 𝑇 → 𝐾∕𝑅 𝑐𝑎([𝑥], [𝑦]) = [𝑎𝑥𝑦] ∈ 𝐾∕𝑅.

ii) Under the dévissage equivalence Ls
0(𝔽𝔭; 𝔭

−1∕𝑅) = Ls
0(𝔽𝔭; 𝑝∗𝑅[1])

≃
←←←←←←←→ L0(D

p
𝔭(𝑅), Ϙ

s
𝑅[1]), the class

𝜕̄0⟨𝑎⟩ corresponds to that of the 𝔽𝑝-vector space 𝑇 ′ = 𝔭−1∕𝑅, equipped with the (𝔭−1∕𝑅)-valued
form

𝑐′𝑎 ∶ 𝑇
′ × 𝑇 ′ → 𝔭−1∕𝑅 𝑐′𝑎([𝑥], [𝑦]) = [𝑎𝑥𝑦] ∈ 𝔭−1∕𝑅.

iii) Using the uniformiser 𝜋 to define an isomorphism 𝑝∗𝑅[1] = 𝔭−1∕𝑅
𝜋
←←←←←←←→ 𝑅∕𝔭 = 𝔽𝔭, then, under the

resulting equivalence Ls
0(𝔽𝔭)

≃
←←←←←←←→ L0(D

p
𝔭(𝑅), Ϙ

s
𝑅[1]), the class of 𝜕̄0⟨𝑢𝜋⟩ corresponds to ⟨[𝑢]⟩.

Statement i)i) is simply the specialization of Proposition 2.1.52.1.5 to the present case. Indeed, 𝑅 ⊆ 𝐾 is an
𝑅-lattice whose dual lattice is 𝔭−1, in particular 𝑅 is an integral lattice and the associated torsion module is
precisely 𝔭−1∕𝑅 with the described form. For ii)ii) we note that the counit map 𝑝∗𝑝∗𝑅 → 𝑅, through which
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the dévissage Poincaré functor is constructed (see the proof of Corollary 2.2.32.2.3), can be identified with the
forgetful map hom𝑅(𝑅∕𝔭, 𝑅) = f ib[𝑅 → 𝔭−1] → 𝑅. We may consequently factor it as

f ib[𝑅 → 𝔭−1] → f ib[𝑅→ 𝐾] → 𝑅,

which, after suspending, becomes 𝔭−1∕𝑅 → 𝐾∕𝑅 → 𝑅[1]. The (suspended) dévissage functor of Corol-
lary 2.2.32.2.3 thus factors as

(Dp(𝔽𝑝), Ϙs𝑝∗𝑅[1]) → (Dp
𝔭(𝑅), Ϙ

s
𝐾∕𝑅)

≃
←←←←←←←→ (Dp

𝔭(𝑅), Ϙ
s
𝑅[1]),

where the first functor carries the Poincaré structure induced as in Proposition 2.2.12.2.1 from the map 𝑝∗𝑝∗𝑅[1] =
𝔭−1∕𝑅 → 𝐾∕𝑅. This Poincaré functor thus sends (𝑇 ′, 𝑐′𝑎) to the Poincaré object (𝑇 , 𝑐𝑎), so that ii)ii) follows.
Finally, iii)iii) follows from ii)ii) since for 𝑥, 𝑦 ∈ 𝑅 we have 𝜋𝑐′𝑢𝜋([𝑥∕𝜋], [𝑦∕𝜋]) = [𝑢𝑥𝑦] ∈ 𝔽𝔭. □

2.2.10. Remark. Lemma 2.2.92.2.9 identifies the map 𝜕0 ∶ Ls
0(𝐾) → ⊕𝔭 Ls

0(𝔽𝔭) with the map induced by the
maps 𝜓1 ∶ Ws(𝐾) → Ws(𝔽𝔭) constructed in [MH73MH73, Chapter IV §1].

2.3. Symmetric and quadratic L-groups of Dedekind rings. In this section we show that the classical
symmetric and quadratic Grothendieck-Witt groups of certain Dedekind rings are finitely generated. By
Theorem 11 it will suffice to prove the finite generation of the corresponding genuine L-groups, provided
the finite generation of the K-groups is known. Moreover, as we show in Corollary 2.3.182.3.18, by the surgery
results established in the earlier sections, it will in fact suffice to show the finite generation of the symmetric
and quadratic L-groups. In this case, we in fact do much more: We give a full calculation of the quadratic
and symmetric L-groups of Dedekind rings whose field of fractions is not of characteristic 2. We first treat
the symmetric case, where we make essential use of the boundary map

𝜕𝑛 ∶ Ls
𝑛(𝐾) → Ls

𝑛(𝔽𝔭)

arising from the localisation-dévissage sequence.

2.3.1. Proposition. Let 𝑅 be a Dedekind ring whose field of fractions 𝐾 is not of characteristic 2, and let I
be the (finite) set of dyadic primes of 𝑅. Then we have

Ls
𝑛(𝑅) ≅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ws(𝑅) for 𝑛 ≡ 0(4)
⊕
𝔭∈I

Ws(𝔽𝔭) for 𝑛 ≡ 1(4)

0 for 𝑛 ≡ 2(4)
coker(𝜕0) for 𝑛 ≡ 3(4)

Proof. The case 𝑛 ≡ 0(4) follows from combining Corollary 1.2.161.2.16 and Corollary 1.3.141.3.14. Since the sym-
metric L-groups of 𝐾 and each residue field 𝔽𝔭 vanish in odd degrees by Corollary 1.3.41.3.4, the long exact
sequence in L-groups furnished by Corollary 2.2.52.2.5 yields for every 𝑘 an exact sequence

0 ⟶ Ls
2𝑘(𝑅) ⟶ Ls

2𝑘(𝐾)
𝜕2𝑘
⟶ ⊕𝔭 Ls

2𝑘(𝔽𝔭) ⟶ Ls
2𝑘−1(𝑅) ⟶ 0.

This shows the case 𝑛 ≡ 2(4), as for odd numbers 𝑘, the group Ls
2𝑘(𝐾) is isomorphic to the anti-symmetric

Witt group of𝐾 by Corollary 1.3.41.3.4, which vanishes as the characteristic of𝐾 is not 2. The remaining cases
are obvious from the above exact sequence, making use of the fact that the symmetric L-theory of fields of
characteristic 2, like 𝔽𝔭 for dyadic primes, is 2-periodic, whereas the symmetric L-theory of fields of odd
characteristic vanishes in degrees different from 0 ≡ 4, see Remark 1.3.51.3.5. □

2.3.2. Corollary. Under the assumptions of Proposition 2.3.12.3.1, assume in addition that 𝐾 is a global field
and let 𝑑 = |I| be the (finite) number of dyadic primes of 𝑅. Then we have

Ls
𝑛(𝑅) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Ws(𝑅) for 𝑛 ≡ 0(4)
(ℤ∕2)𝑑 for 𝑛 ≡ 1(4)
0 for 𝑛 ≡ 2(4)
Pic(𝑅)∕2 for 𝑛 ≡ 3(4)
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Proof. The case 𝑛 ≡ 1(4) follows since the assumption that 𝐾 is global says that the residue fields 𝔽𝔭 at
non-zero primes are finite fields. The claim then follows from the fact that the symmetric Witt group of
a finite field of characteristic 2 is given by ℤ∕2. For the other non-trivial case, Remark 2.2.102.2.10 gives the
following commutative diagram

Ws(𝐾) ⊕
𝔭
Ws(𝔽𝔭)

Ls
0(𝐾) ⊕

𝔭
Ls
0(𝔽𝔭)

𝜓1

≅ ≅
𝜕0

It is then shown in [MH73MH73, Chapter IV §4] that the cokernel of the upper horizontal map is given by
Pic(𝑅)∕2, provided 𝐾 is a number field. In [Sch12Sch12, Chapter 6, §6, Theorem 6.11] this is extended to
hold for a general global field 𝐾 . □

2.3.3. Remark. We recall that there is a canonical equivalence L−s(𝑅) ≃ Σ2 Ls(𝑅), so that Proposition 2.3.12.3.1
and Corollary 2.3.22.3.2 also determine the (−1)-symmetric L-groups.

When the fraction field of 𝑅 is a global field of characteristic 2 we have a similar result:

2.3.4. Corollary. Let 𝑅 be a Dedekind ring whose field of fractions 𝐾 is a global field of characteristic 2.
Then

Ls
𝑛(𝑅) =

{

Ws(𝑅) for 𝑛 ≡ 0(2)
Pic(𝑅)∕2 for 𝑛 ≡ 1(2)

Proof. As in the proof of Proposition 2.3.12.3.1, we have an exact sequence

0 ⟶ Ls
2𝑘(𝑅) ⟶ Ls

2𝑘(𝐾)
𝜕2𝑘
⟶ ⊕𝔭 Ls

2𝑘(𝔽𝔭) ⟶ Ls
2𝑘−1(𝑅) ⟶ 0.

Since 𝑅 is an 𝔽2-algebra, the L-groups Ls
𝑛(𝑅) are 2-periodic and since 𝐾 is a global field, all residue fields

𝔽𝔭 are (finite) fields of characteristic 2. We recall that there is an exact sequence of abelian groups

𝐾× div
⟶ Div(𝑅) ⟶ Pic(𝑅) ⟶ 0

where Div(𝑅) is the free abelian group generated by the prime ideals of 𝑅, and the group homomorphism
div is determined by the following: For a non-zero element 𝑥 of 𝑅, write (𝑥) = 𝔭𝑟11 ⋅ ⋯ ⋅ 𝔭𝑟𝑛𝑛 with natural
numbers 𝑟𝑖. Then div(𝑥) =

∑𝑛
𝑖=1 𝑟𝑖 ⋅ 𝔭𝑖. Now consider the diagram

ℤ∕2[𝑅 ⧵ {0}] Div(𝑅)∕2 Pic(𝑅)∕2 0

Ws(𝐾) ⊕𝔭Ws(𝔽𝔭) Ls
1(𝑅) 0

⟨−⟩ ≅
𝜕0

consisting of exact horizontal sequences and the left most top vertical map is induced by the map div above.
Here, the middle vertical isomorphism is induced from the isomorphism Div(𝑅)∕2 ≅ ⊕𝔭ℤ∕2 and the
isomorphisms Ws(𝔽𝔭) ≅ ℤ∕2. The left square commutes by an explicit check, so that there exists a dashed
arrow as indicated. By construction, the dashed map is a surjection, and an injection by the observation
that the left most vertical map is surjective: Indeed, the Witt group Ws(𝐾) is generated by the forms ⟨𝑥⟩ for
𝑥 ∈ 𝐾× by [MH73MH73, I §3] and for every 𝑥 in𝐾× there is a 𝑦 ∈ 𝐾× such that 𝑥𝑦2 is contained in𝑅⧵{0}. □

2.3.5. Remark. Let 𝑅 be a local Dedekind ring with fraction field 𝐾 and residue field 𝑘. Then the map
𝜕0 ∶ Ls

0(𝐾) → Ls
0(𝑘) is surjective by Lemma 2.2.92.2.9, and we have seen earlier that its kernel is Ls

0(𝑅).
Assuming that the characteristic of 𝐾 is not 2, we deduce from Proposition 2.3.12.3.1 that Ls

𝑛(𝑅) vanishes for
𝑛 ≡ 2, 3 mod (4). Furthermore, for 𝑛 ≡ 1 mod (4), we find that Ls

𝑛(𝑅) is either isomorphic to Ws(𝑘), if
the characteristic of 𝑘 is 2, or is trivial otherwise. If the characteristic of 𝐾 is 2, we deduce from the proof
of Corollary 2.3.42.3.4 that Ls

1(𝑅) = 0.

We now want to give a formula for the quadratic L-groups of Dedekind rings, similar to Proposition 2.3.12.3.1
and Corollary 2.3.22.3.2. By Remark 2.2.82.2.8, the strategy based on the localisation-dévissage sequence will not
work in general for quadratic L-groups. Instead, we will make use of a general localisation-completion
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property, Proposition 2.3.62.3.6 below, and a rigidity property of quadratic L-theory, Proposition 2.3.72.3.7. These
two properties do not require assuming that the ring in question is Dedekind, or even commutative. Follow-
ing §[IIII].A.4A.4, for a subgroup c ⊂ K0(𝑅) fixed by the involution, we let Dc(𝑅) denote the full subcategory of
Dp(𝑅) spanned by the complexes whose K0-class lies in c. The subgroup 𝑐 is sometimes called the control
term in the literature.

2.3.6. Proposition. Let 𝑅 be a ring, 𝑀 an invertible ℤ-module with involution over 𝑅, and 𝑆 the multi-
plicatively closed subset generated by an integer 𝓁 ∈ 𝑅. Assume that 𝑅∧

𝓁 is the derived 𝓁-completion of 𝑅,
(e.g. that the order of the 𝓁∞-torsion in 𝑅 is bounded, for instance that 𝓁 is not a zero divisor). Then the
square

(Dp(𝑅), Ϙ≥𝑚𝑀 ) (Dp(𝑅∧
𝓁), Ϙ

≥𝑚
𝑀∧

𝓁

)

(Dc(𝑅[ 1
𝓁
]), Ϙ≥𝑚

𝑆−1𝑀
) (Dc′ (𝑅∧

𝓁[
1
𝓁
]), Ϙ≥𝑚

𝑆−1(𝑀∧
𝓁
)
)

is a Poincaré-Verdier square for all 𝑚 ∈ ℤ ∪ {±∞}, where 𝑐 = im(K0(𝑅) → K0(𝑅[
1
𝓁
])), and 𝑐′ =

im(K0(𝑅∧
𝓁) → K0(𝑅∧

𝓁[
1
𝓁
])). In particular it becomes a pullback after applying GW or L.

Proof. We show that the canonical maps 𝑓 ∶ 𝑅 → 𝑅∧
𝓁 and 𝛼∶ 𝑀 → (𝑓 ⊗ 𝑓 )∗(𝑀∧

𝓁) satisfy the conditions
of Proposition [IIII].4.4.204.4.20. For i)i), we note that the composite morphism

𝑅∧
𝓁 ⊗𝑅𝑀 → (𝑅∧

𝓁 ⊗𝑅∧
𝓁)⊗𝑅⊗𝑅𝑀 →𝑀∧

𝓁

is indeed an equivalence: This is clear for 𝑀 = 𝑅, which implies the general case since 𝑀 is a finitely
generated projective 𝑅-module. Conditions ii)ii) and iv)iv) are immediate from the fact that 𝓁 is in the image of
the unit map ℤ → 𝑅, and iii)iii) follows from the fact that the square

𝑅 𝑅∧
𝓁

𝑅[ 1
𝓁
] 𝑅∧

𝓁[
1
𝓁
]

is a derived pullback, see for instance [DG02DG02, §4], as the assumption on 𝓁∞-torsion implies that 𝑅∧
𝓁 is also

a derived completion. The final thing to check is that the map 𝑀∧
𝓁[

1
𝓁
] → 𝑀[1] induces the zero map in

C2-Tate cohomology. This follows from the fact that the domain is a ℚ-vector space, and so has trivial
C2-Tate cohomology. □

To make efficient use of the localisation-completion square, we shall also need the following result due
to Wall [Wal73Wal73, Lemma 5]. We include a guide through the proof merely for convenience of the reader,
as to avoid confusion about different definitions (and versions) of L-theory. We warn the reader that what
is denoted by 𝐿𝐾𝑖 (𝑅) in [Wal73Wal73] is what we would denote L(Df (𝑅), Ϙq), i.e. quadratic L-theory based on
complexes of (stably) free modules.

2.3.7. Proposition. Let 𝑅 be ring, complete in the 𝐼-adic topology for an ideal 𝐼 of 𝑅. Then the canonical
map Lq(𝑅) → Lq(𝑅∕𝐼) is an equivalence.

Proof. First, we claim that the functor Unimodq(𝑅; 𝜖) → Unimodq(𝑅∕𝐼 ; 𝜖) induces a bijection on isomor-
phism classes, for 𝜖 = ±1. To see this, we first observe that the functor Proj(𝑅) → Proj(𝑅∕𝐼) is full and
essentially surjective. Moreover, for any finitely generated projective 𝑅 module 𝑃 , the map

Ϙ
q
𝜖 (𝑃 ) → Ϙ

q
𝜖 (𝑃 ⊗U

𝑅 𝑅∕𝐼)

is surjective on 𝜋0, and furthermore an 𝜖-quadratic form is unimodular if and only if its image over 𝑅∕𝐼 is;
this is as a consequence of Nakayama’s lemma: 𝐼 is contained in the Jacobson radical as we have assumed
that𝑅 is 𝐼-complete. We deduce that the quotient map𝑅→ 𝑅∕𝐼 induces a surjective map on isomorphism
classes of quadratic forms. To see injectivity, we apply [Wal70Wal70, Theorem 2]: amongst other things, it says
that given forms (𝑃 , 𝑞) and (𝑃 ′, 𝑞′) over 𝑅, then any isometry between their induced forms over 𝑅∕𝐼 can
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be lifted to an isometry over 𝑅. In particular, the map Unimodq(𝑅; 𝜖) → Unimodq(𝑅∕𝐼 ; 𝜖) is also injective
on isomorphism classes. We deduce that the map GWq

0(𝑅; 𝜖) → GWq
0(𝑅∕𝐼 ; 𝜖) is an isomorphism. Since

likewise the map K0(𝑅) → K0(𝑅∕𝐼) is an isomorphism, we deduce that Lq
0(𝑅; 𝜖) → Lq

0(𝑅∕𝐼 ; 𝜖) is an
isomorphism as well. We then consider the diagram

𝜋1(K(𝑅; 𝜖)hC2
) GWq

1(𝑅; 𝜖) Lq
1(𝑅; 𝜖) K0(𝑅; 𝜖)C2

GWq
0(𝑅; 𝜖)

𝜋1(K(𝑅∕𝐼 ; 𝜖)hC2
) GWq

1(𝑅∕𝐼 ; 𝜖) Lq
1(𝑅∕𝐼 ; 𝜖) K0(𝑅∕𝐼 ; 𝜖)C2

GWq
0(𝑅∕𝐼 ; 𝜖)

≅ ≅

where [Wal73Wal73, Corollary 1 & Lemma 1] give that the two left most vertical maps are surjective, and
[Wal73Wal73, Proposition 4] that the induced map on vertical kernels is surjective. This implies that the map
Lq
1(𝑅; 𝜖) → Lq

1(𝑅∕𝐼 ; 𝜖) is an isomorphism. From the general periodicity Lq
𝑛(𝑅; 𝜖) ≅ 𝐿q

𝑛+2(𝑅; −𝜖) we de-
duce the proposition. □

2.3.8. Remark. We thank Akhil Mathew for making us aware of the following result, see [CMM18CMM18, Re-
mark 5.6] for the details. Namely, let 𝐹 be a functor from commutative rings to spectra which commutes
with filtered colimits, and assume that 𝐹 satisfies the following property. For every pair (𝑅, 𝐼) where 𝑅
is a Noetherian commutative ring, complete in the 𝐼-adic topology for an ideal 𝐼 ⊆ 𝑅, the canonical map
𝐹 (𝑅) → 𝐹 (𝑅∕𝐼) is an equivalence. Then the map 𝐹 (𝑆) → 𝐹 (𝑆∕𝐽 ) is an equivalence for every henselian
pair (𝑆, 𝐽 ). Since L-theory commutes with filtered colimits, we deduce from this and Proposition 2.3.72.3.7 that
the canonical map Lq(𝑆) → Lq(𝑆∕𝐽 ) is an equivalence for any henselian pair (𝑆, 𝐽 ).

We now apply the above results in order to compute the quadratic L-groups of Dedekind rings.

2.3.9. Proposition. Let 𝑅 be a Dedekind ring whose field of fractions 𝐾 is not of characteristic 2, and let I
be the (finite) set of dyadic primes of 𝑅. Then we have

Lq
𝑛(𝑅) ≅

⎧

⎪

⎨

⎪

⎩

Wq(𝑅) for 𝑛 ≡ 0(4)
0 for 𝑛 ≡ 1(4)
⊕
𝔭∈I

Wq(𝔽𝔭) for 𝑛 ≡ 2(4)

The isomorphism in degrees 𝑛 ≡ 2(4) is induced by the canonical maps 𝑅 → 𝔽𝔭 for each dyadic prime 𝔭.
For 𝑛 ≡ 3(4) there is a short exact sequence

0 ⟶ 𝐴⟶ Lq
𝑛(𝑅) ⟶ Ls

𝑛(𝑅) ⟶ 0

where 𝐴 is the total cokernel, that is the cokernel of the map induced on cokernels, of the commutative
square

Lq
0(𝑅) Ls

0(𝑅)

Lq
0(𝑅

∧
2) Ls

0(𝑅
∧
2)

Proof. The canonical map Wq(𝑅) → Lq
0(𝑅) is an isomorphism by Corollary 1.2.161.2.16. To see the other cases,

we consider the cube
Ls(𝑅) Ls(𝑅∧

2)

Lq(𝑅) Lq(𝑅∧
2)

Ls(𝑅[ 12 ]) Ls(𝑅∧
2[

1
2 ])

Lq(𝑅[ 12 ]) Lq(𝑅∧
2[

1
2 ])

which is obtained by mapping the quadratic localisation-completion square appearing in Proposition 2.3.62.3.6
to the symmetric one. We note that no control terms are needed since localisations of Dedekind rings
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induce surjections on K0. In this cube, the front and back squares are pullbacks by Proposition 2.3.62.3.6, and
the bottom square is a pullback since in all rings that appear 2 is invertible. We deduce that the diagram

(9)

Lq(𝑅) Lq(𝑅∧
2)

Ls(𝑅) Ls(𝑅∧
2)

is also a pullback.
Now all remaining statements to be proven follow from the long exact Mayer-Vietoris sequence associ-

ated to this pullback, using the following:
i) Lq

𝑛(𝑅∧
2) = 0 for odd 𝑛, by Proposition 2.3.72.3.7,

ii) Ls
𝑛(𝑅

∧
2) = 0 for 𝑛 ≡ 3(4), because 𝑅∧

2 is a product of local Dedekind rings; see Remark 2.3.52.3.5,
iii) Ls

𝑛(𝑅) = Ls
𝑛(𝑅

∧
2) = 0 for 𝑛 ≡ 2(4) by Proposition 2.3.12.3.1, and

iv) the map Ls
1(𝑅) → Ls

1(𝑅
∧
2) is an isomorphism. This can be seen from the localisation-completion

square for symmetric L-theory and iii)iii).
□

2.3.10. Corollary. Under the assumptions of Proposition 2.3.92.3.9, assume in addition that𝐾 is a number field
and let 𝑑 = |I| be the (finite) number of dyadic primes of 𝑅. Then we have

Lq
𝑛(𝑅) ≅

⎧

⎪

⎨

⎪

⎩

Wq(𝑅) for 𝑛 ≡ 0(4)
0 for 𝑛 ≡ 1(4)
(ℤ∕2)𝑑 for 𝑛 ≡ 2(4)

The invariants in the case 𝑛 ≡ 2(4) are given by the Arf invariants of the images in the L-theory of 𝔽𝔭 for
each dyadic prime 𝔭. Moreover, there is an exact sequence

0 ⟶ 𝐴⟶ Lq
−1(𝑅) ⟶ Pic(𝑅)∕2 ⟶ 0

where 𝐴 is as in Proposition 2.3.92.3.9 and is a finite 2-group.

Proof. First we recall from Corollary 2.3.22.3.2 that for 𝑛 ≡ 3(4), we have Ls(𝑅) ≅ Pic(𝑅)∕2, and that 𝐴 is a
quotient of Ls

0(𝑅
∧
2). We have (2) = (𝔭𝑒11 ⋅ ⋯ ⋅ 𝔭𝑒𝑘𝑘 ) for some numbers 𝑒𝑖, where the 𝔭𝑖 are the dyadic primes.

It follows that there is an isomorphism

Ls
0(𝑅

∧
2) ≅

𝑘
∏

𝑖=1
Ls
0(𝑅

∧
𝔭𝑖
).

It thus suffices to recall that
i) the map Ls

0(𝑅
∧
𝔭𝑖
) → Ls

0(𝑅
∧
𝔭𝑖
[ 12 ]) is injective; see the proof of Proposition 2.3.12.3.1, and that

ii) Ls
0(𝑅

∧
𝔭𝑖
[ 12 ]) is a finite 2-group: The fraction field 𝑅∧

𝔭𝑖
[ 12 ] of 𝑅∧

𝔭𝑖
is a finite extension of ℚ2, so we may

appeal to [Lam05Lam05, Theorem VI 2.29].
Finally, we note that the residue fields 𝔽𝔭 are finite fields of characteristic 2, so that the Arf invariant provides
an isomorphism Wq(𝔽𝔭) ≅ ℤ∕2. □

2.3.11. Remark. As in the symmetric case, we recall that there is a canonical equivalence L−q(𝑅) ≃
Σ2 Lq(𝑅), so that Proposition 2.3.92.3.9 and Corollary 2.3.102.3.10 also determine the (−1)-quadratic L-groups.

2.3.12. Remark. If the number 𝑑 of dyadic primes of 𝑅 is at least 2, then 𝐴 is not trivial: Taking the rank
mod 2 induces the right horizontal surjections in the following diagram.

Lq
0(𝑅) Ls

0(𝑅) ℤ∕2

Lq
0(𝑅

∧
2) Ls

0(𝑅
∧
2) (ℤ∕2)𝑑
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Both horizontal composites are zero, therefore we obtain a commutative diagram

coker(Lq
0(𝑅) → Ls

0(𝑅)) ℤ∕2

coker(Lq
0(𝑅

∧
2) → L𝑠0(𝑅

∧
2)) (ℤ∕2)𝑑

whose horizontal arrows are surjective. The induced map on vertical cokernels is a map 𝐴 → (ℤ∕2)𝑑−1
which is therefore again surjective.

2.3.13. Example. Let us consider the case 𝑅 = ℤ. From the pullback diagram (99), we obtain an exact
sequence

0 ⟶ Lq
0(ℤ)

(0,8)
⟶ Lq

0(ℤ
∧
2)⊕ Ls

0(ℤ) ⟶ Ls
0(ℤ

∧
2) ⟶ Lq

−1(ℤ) ⟶ 0,

where the map Lq
0(ℤ) → Lq

0(ℤ
∧
2) is the zero map: By Proposition 2.3.72.3.7, it suffices to know that the map

Lq
0(ℤ) → Lq

0(𝔽2) is the zero map. For this, one calculates that the Arf invariant of the 𝐸8-form (viewed as
a form over 𝔽2) is zero. Furthermore, the map Lq

0(ℤ) → Ls
0(ℤ) is isomorphic to multiplication by 8, as the

𝐸8 form generates Lq
0(ℤ). We therefore obtain a short exact sequence

(10) 0 ⟶ ℤ∕2⊕ ℤ∕8 ⟶ Ls
0(ℤ

∧
2) ⟶ Lq

−1(ℤ) ⟶ 0.

Furthermore, by localisation-dévissage, there is a short exact sequence

0 ⟶ Ls
0(ℤ

∧
2) ⟶ Ls

0(ℚ2) ⟶ ℤ∕2 ⟶ 0

and from [Lam05Lam05, Theorem 2.29 & Corollary 2.23], we know that Ls
0(ℚ2) has 32 elements. We deduce

that Ls
0(ℤ

∧
2) has 16 elements, and hence the above injection ℤ∕2⊕ ℤ∕8 ⊆ Ls

0(ℤ
∧
2) is an isomorphism. For

completeness, we observe that the exact sequence involving Ls
0(ℚ2) splits, so one obtains the well known

isomorphism Ls
0(ℚ2) ≅ (ℤ∕2)2⊕ℤ∕8 [Lam05Lam05, Theorem 2.29]. A concrete splitting is given by the element

⟨−1, 2⟩. The only thing that needs checking is that this element has order 2.
From the above and the exact sequence (1010), we find that Lq

−1(ℤ) = 0. In particular, we obtain the well
known calculations of the symmetric and quadratic L-groups of ℤ:

Ls
𝑛(ℤ) ≅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℤ for 𝑛 ≡ 0(4)
ℤ∕2 for 𝑛 ≡ 1(4)
0 for 𝑛 ≡ 2(4)
0 for 𝑛 ≡ 3(4)

Lq
𝑛(ℤ) ≅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℤ for 𝑛 ≡ 0(4)
0 for 𝑛 ≡ 1(4)
ℤ∕2 for 𝑛 ≡ 2(4)
0 for 𝑛 ≡ 3(4)

Together with Theorem 1.2.221.2.22, Corollary 1.3.141.3.14, and Remark 1.3.161.3.16 this determines Lgs
𝑛 (ℤ). In addition,

we find that the map Lgs(ℤ)[ 12 ] → Ls(ℤ)[ 12 ] is an equivalence. We will make use of this fact in Proposi-
tion 3.1.143.1.14.

2.3.14. Example. Consider the quadratic extension 𝐾 = ℚ[
√

−3] of ℚ and let 𝑅 be its ring of integers.
Concretely, 𝑅 is the ring of Eisenstein integers 𝑅 = ℤ[ 1+

√

−3
2 ], which is a euclidean domain and hence a

principal ideal domain. The discriminant of 𝐾 is (3), and as (2) does not divide (3), we deduce that (2)
is a prime ideal in 𝑅 [Neu99Neu99, Corollary III.2.12], and hence is the single dyadic prime. We deduce that
Ls
2(𝑅) = Ls

3(𝑅) = 0, as the Picard group of a principal ideal domain vanishes. Furthermore Ls
1(𝑅) ≅ ℤ∕2

and Ls
0(𝑅) ≅ Ws

0(𝑅) ≅ ℤ∕4 [MH73MH73, Corollary 4.2]. To calculate the quadratic L-groups we consider the
diagram of exact sequences

0 Lq
0(ℤ) ℤ⊕ ℤ∕2 Ls

0(ℤ
∧
2) 0 0

0 Lq
0(𝑅) ℤ∕4⊕ ℤ∕2 Ls

0(𝑅
∧
2) 𝐴 0

(8,0)

0 (pr,id) 𝜃
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and deduce that 𝐴 ≅ coker(𝜃) and that there is an exact sequence

0 ⟶ ℤ∕2 ⟶ ker(𝜃) ⟶ Lq
0(𝑅) ⟶ 0.

Now, from the commutative diagram of localisation-dévissage sequences (note that 2 is a uniformiser in
both cases)

Ls(ℤ∧
2) Ls(ℚ2) Ls(ℤ∕(2))

Ls(𝑅∧
2) Ls(𝐾∧

2 ) Ls(𝑅∕(2))

we deduce that the kernel and the cokernel of 𝜃 are respectively isomorphic to the kernel and the cokernel
of the map

𝜃′ ∶ Ls
0(ℚ2) ⟶ Ls

0(𝐾
∧
2 ).

It is a general theorem about quadratic extensions of fields that the kernel of 𝜃′ is, as an ideal, generated
by the element ⟨1, 3⟩, [Lam05Lam05, VII Theorem 3.5]. Since −5∕3 is a square in ℚ2, we deduce that ⟨1, 3⟩ =
⟨1,−5⟩. From [Lam05Lam05, VI Remark 2.31], we then deduce that the kernel of 𝜃′ is spanned by 4⟨1⟩ and ⟨1, 3⟩
and thus isomorphic to (ℤ∕2)2. We deduce that Lq

0(𝑅) ≅ ℤ∕2. From [Lam05Lam05, VII Theorem 3.5], we also
find that

coker(𝜃′) ≅ ker
(

Ls
0(ℚ2)

⋅⟨1,3⟩
⟶ Ls

0(ℚ2)
)

and again from [Lam05Lam05, Remark 2.31], we find that the kernel of ⋅⟨1, 3⟩ is additively generated by 2⟨1⟩ and
⟨1,−2⟩, and deduce an isomorphism

ker
(

Ls
0(ℚ2)

⋅⟨1,3⟩
⟶ Ls

0(ℚ2)
)

≅ ℤ∕4⊕ ℤ∕2.

In summary, we obtain the following L-groups for 𝑅:

Ls
𝑛(𝑅) ≅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℤ∕4 for 𝑛 ≡ 0(4)
ℤ∕2 for 𝑛 ≡ 1(4)
0 for 𝑛 ≡ 2(4)
0 for 𝑛 ≡ 3(4)

Lq
𝑛(𝑅) ≅

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ℤ∕2 for 𝑛 ≡ 0(4)
0 for 𝑛 ≡ 1(4)
ℤ∕2 for 𝑛 ≡ 2(4)
ℤ∕4⊕ ℤ∕2 for 𝑛 ≡ 3(4)

2.3.15. Remark. Let 𝑅 be a Dedekind ring and 𝑆 a set of primes not containing a dyadic one. We note
that in this case, 𝑅 and 𝑅𝑆 have the same 2-adic completions, i.e. the canonical map 𝑅∧

2 → (𝑅𝑆 )∧2 is an
isomorphism. We then consider the following diagram

Lq(𝑅) Lq(𝑅𝑆 ) Lq(𝑅∧
2)

Ls(𝑅) Ls(𝑅𝑆 ) Ls(𝑅∧
2).

We have seen in the proof of Proposition 2.3.92.3.9 that the big and the right squares are pullbacks. Therefore,
so is the left square. Using that for any non-dyadic prime 𝔭 of 𝑅, the residue field 𝔽𝔭 is a field of odd
characteristic, so that its quadratic and symmetric L-theories agree, we deduce from Corollary 2.2.52.2.5 that
there is a fibre sequence

Lq(𝑅) ⟶ Lq(𝑅𝑆 ) ⟶ ⊕
𝔭∈𝑆

Lq(𝔽𝔭)

so that the failure of dévissage in quadratic L-theory is related only to dyadic primes, as indicated in Re-
mark 2.2.82.2.8.

2.3.16. Corollary. Let O be a number ring, that is, a localisation of the rings of integers in a number field
away from finitely many primes, and 𝜖 = ±1. Then the 𝜖-symmetric L-groups Ls

𝑛(O; 𝜖) and the 𝜖-quadratic
L-groups Lq

𝑛(O; 𝜖) are finitely generated.
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Proof. It follows from Proposition 2.3.12.3.1 and Corollary 2.3.102.3.10 and Remarks 2.3.32.3.3 and 2.3.112.3.11 that it suffices
to show that the symmetric Witt group Ws(O), the quadratic Witt group Wq(O), and the Picard group Pic(O)
are finitely generated. The statement for the symmetric Witt group is proven in [MH73MH73, §4, Theorem 4.1],
and in fact Ws(O) is an extension of a finite group by a free abelian group of rank given by the number of
real embeddings of the number field 𝐹 . Now we claim that generally for a Dedekind ring 𝑅 whose fraction
field 𝐾 is of characteristic different from 2, the canonical map Wq(𝑅) → Ws(𝑅) is injective, so that Wq(𝑅)
is finitely generated if Ws(𝑅) is. This follows from the fact that the map Wq(𝑅) → Wq(𝐾) is injective, see
[KS71KS71]. As the argument in loc. cit. is not explicitly written out, let us sketch a direct argument that the
map Wq(𝑅) → Ws(𝑅) is injective: First, assume that a symmetric form (𝑃 , 𝜑) vanishes in Ws(𝑅). Then
the same is true for its image in Ws(𝐾). By Corollary 1.3.41.3.4 we deduce that (𝑃 ⊗𝑅 𝐾,𝜑 ⊗𝑅 𝐾) admits a
strict Lagrangian. The argument written in the proof of [KS71KS71, Lemma 1.4] then shows that (𝑃 , 𝜑) indeed
itself admits a strict Lagrangian. Now, let (𝑃 , 𝑞) be a quadratic form whose image in Ws(𝑅) vanishes. We
deduce that the underlying symmetric bilinear form of (𝑃 , 𝑞) admits a strict Lagrangian𝐿. We then observe
that for each 𝑥 in 𝐿, we have 2𝑞(𝑥) = 𝑏(𝑥, 𝑥) = 0, so that 𝑞

|𝐿 = 0 as 𝑅 is 2-torsion free. It follows that
𝐿 is a Lagrangian for the quadratic form (𝑃 , 𝑞) as needed. Finally, the Picard group of the ring of integers
in a number field is finite (in other words, the class number of a ring of integers is finite), and hence the
Picard group of a localisation of such a ring receives a surjection from a finite group and is thus itself finite,
compare to the proof of Proposition 2.1.32.1.3. □

2.3.17. Remark. In the above proof, we have again restricted our attention to Dedekind rings whose field
of fractions 𝐾 has characteristic different from 2. If the characteristic of 𝐾 is 2 we find that:

i) The map Ws(𝑅) → Ws(𝐾) is injective, but
ii) the map Wq(𝑅) → Ws(𝑅) is zero.

Indeed i)i) follows from the same argument given above, since also for fields 𝐾 of characteristic 2 a form
(𝑃 , 𝑏) is zero in Ws(𝐾) if and only if it admits a strict Lagrangian, see Corollary 1.3.41.3.4. To see ii)ii), it suffices
to show that the composite Wq(𝑅) → Ws(𝑅) → Ws(𝐾) vanishes, as the latter map is injective, see the
proof of Corollary 2.3.42.3.4. This composite factors through the map Wq(𝐾) → Ws(𝐾) which is zero as the
underlying bilinear form of any quadratic form over a field of characteristic 2 has a symplectic basis and
hence admits a Lagrangian.

2.3.18. Corollary. Let O be a number ring and 𝜖 = ±1. Then for all 𝑚, 𝑛 ∈ ℤ, the groups L𝑛(O; Ϙ≥𝑚𝜖 ), and
consequently the groups GW𝑛(O; Ϙ≥𝑚𝜖 ), are finitely generated.

Proof. We saw in Example 1.1.41.1.4 that the functor Ϙ≥𝑚𝜖 is 𝑚-quadratic and (2−𝑚)-symmetric. Hence, on the
one hand, it follows from Corollary 1.2.121.2.12 that for 𝑛 ≤ 2𝑚−2 the map Lq

𝑛(O; 𝜖) → L𝑛(O; Ϙ≥𝑚𝜖 ) is surjective.
By Corollary 2.3.162.3.16 the left hand group is finitely generated, so the same is true for L𝑛(O; Ϙ≥𝑚𝜖 ).

On the other hand, Corollary 1.3.91.3.9 implies that the mapL𝑛(O; Ϙ≥𝑚𝜖 ) → Ls
𝑛(O; 𝜖) is injective for 𝑛 ≥ 2𝑚−1.

Again, by Corollary 2.3.162.3.16 the target group is finitely generated, it follows that L𝑛(O; Ϙ≥𝑚𝜖 ) is so as well. To
obtain the consequences for Grothendieck-Witt groups, we recall from Quillen’s results that the algebraic
K-groups of number rings are finitely generated [Qui73aQui73a]. From the homotopy orbits spectral sequence, it
follows that also the homotopy groups of K(O; 𝜖)hC2

are finitely generated, so that the desired result follows
from the fibre sequence

K(O; 𝜖)hC2
⟶ GW(O; Ϙ≥𝑚𝜖 ) ⟶ L(O; Ϙ≥𝑚𝜖 ).

□

Combining the above with the comparison theorem of [HS21HS21] gives the following corollary.

2.3.19. Corollary. Let O be a number ring, and 𝜖 = ±1. Then the classical 𝜖-symmetric and 𝜖-quadratic
Grothendieck-Witt groups GWs

cl,𝑛(O; 𝜖) and GWq
cl,𝑛(O; 𝜖) are finitely generated for all 𝑛 ≥ 0.

2.3.20. Remark. The finite generation of the groups GWq(O; 𝜖) can also be deduced by a homological
stability argument similar to the one of Quillen for algebraic K-theory of number rings: By Serre class
theory, it suffices to show that the ordinary homology groups of the components of Ω∞ GWq(O; 𝜖) are
finitely generated. Since every 𝜖-quadratic form is a direct summand in an 𝜖-hyperbolic form, the group
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completion theorem identifies any such component with the space
{

BO∞,∞(O)+ for 𝜖 = 1,
BSpq∞(O)+ for 𝜖 = −1

where O∞,∞(O) and Spq∞(O) denote the colimit of the automorphism group of an 𝑛-fold sum of the (1)- and
(−1)-quadratic hyperbolic form, respectively. Charney [Cha87Cha87] has proved a homological stability result
for those groups, so that it suffices to show that the groups O𝑛,𝑛(O) and Spq𝑛(O) have finitely generated
homology. Let us briefly explain why that is: First we note that both groups are arithmetic. Second, every
arithmetic group has a torsion free finite index subgroup [Ser79Ser79, 1.3 (4)], and hence also a normal torsion
free finite index subgroup. By the Serre spectral sequence for the quotient by this normal subgroup, we find
that it suffices to know that torsion free arithmetic groups have finitely generated homology, which follows
from the fact they they admit a finite classifying space [Ser79Ser79, 1.3 (5)]. We wish to thank Manuel Krannich
for a helpful discussion about this and for making us aware of Serre’s survey.

Finally, we note that in the symmetric case, it is not generally true that every form embeds into a hy-
perbolic form (as any such form admits a quadratic refinement), so in order to run a similar argument one
first needs to find a symmetric bilinear form 𝑏 such that every other form embeds into a suitable number of
orthogonal copies of 𝑏, and one needs to prove homological stability for the family of automorphism groups
of such orthogonal copies of 𝑏. To our knowledge, this is not known to hold in the generality of number
rings, though it does hold for the integers.

3. GROTHENDIECK-WITT GROUPS OF DEDEKIND RINGS

In this final section we consider the homotopy limit problem for Dedekind domains and finite fields
of characteristic 2. In the latter case, we extend the solution of the homotopy limit problem from the
Grothendieck-Witt space (where it is known to hold by the work of Friedlander) to its Grothendieck-Witt
spectrum. We then combine this with the dévissage results of §3.13.1 to solve the homotopy limit problem
for Dedekind rings whose fraction field is a global field of characteristic 0, i.e. a number field, proving
Theorem 22 from the introduction. Finally, we apply these ideas to the particular case of ℤ and calculate its
±1-symmetric and genuine ±1-quadratic Grothendieck-Witt groups conditionally on Vandiver’s conjecture,
and in the range 𝑛 ≤ 20000 unconditionally.

3.1. The homotopy limit problem. A prominent question in the hermitian K-theory of rings and schemes
is when the map from the Grothendieck-Witt space/spectrum to the homotopy fixed points of the associated
algebraic K-theory space/spectrum is an equivalence. This question, first raised by Thomason in [Tho83Tho83],
is commonly known as the homotopy limit problem. In the case of fields, the following theorem represents
the current state of the art; see [HKO11HKO11, BKSØ15BKSØ15, BH20BH20]. We recall that the virtual mod 2 cohomological
dimension vcd2 of a field 𝑘 can be defined as the ordinary mod 2 cohomological dimension cd2 of (the
absolute Galois group of) 𝑘[

√

−1]. In particular, we have vcd2(𝑘) ≤ cd2(𝑘). Given 𝜖 = ±1 we let K(𝑘; 𝜖)
denote the K-theory spectrum of 𝑘 with C2-action induced by the duality D = hom𝑘(−, 𝑘(𝜖)).

3.1.1. Theorem. Let 𝑘 be a field of characteristic different from 2 and such that vcd2(𝑘) < ∞. Then the
map of spectra

GWs(𝑘; 𝜖) ⟶ K(𝑘; 𝜖)hC2

is an equivalence after 2-completion.

3.1.2. Remark. The cited Theorem 3.1.13.1.1 was stated in [BKSØ15BKSØ15] using Schlichting’s model for Grothendieck-
Witt spectra. Since 𝑘 is assumed to have characteristic ≠ 2 we may invoke the comparison statement of
Proposition [IIII].B.2.2B.2.2 and identify Schlichting’s construction with ours.

The characteristic 0 case of Theorem 3.1.13.1.1 was proven in [HKO11HKO11], while the positive odd characteristic
case is established in [BKSØ15BKSØ15]. An alternative proof of this theorem is also provided in recent work of
Bachmann and Hopkins [BH20BH20]. Special cases of the above theorem were already known before: the case
of the field ℂ of complex numbers, for example, can be reduced to the classical equivalence BO ≃ BUhC2

see, e.g., [BK05BK05, Lemma 7.3]. In fact, in loc. cit. the authors prove this also for the (−1)-symmetric variant.
The equivalence for ℂ can in turn be used to deduce the same for finite fields 𝔽𝑞 . One can express the
Grothendieck-Witt spaces of 𝔽𝑞 in terms of the Adams operations on BO and BSp in a way analogous to
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the main results of Quillen’s famous paper [Qui72Qui72] on the algebraic K-theory of 𝔽𝑞 . These results were
first established by Friedlander in [Fri76Fri76], and later expanded and refined in see [FP78FP78] (where also a small
mistake was corrected in the case of 𝑞 even and quadratic forms: Friedlander computed 𝜋1(GW

q
cl(𝔽𝑞)) to

be trivial, but in fact it is isomorphic to ℤ∕2). Combined with the positive solution of the homotopy limit
problem for ℂ they imply the following.

3.1.3. Theorem. For 𝜖 = ±1 and every prime power 𝑞 the natural map

GWs
cl(𝔽𝑞; 𝜖) ⟶ K(𝔽𝑞; 𝜖)hC2

is an equivalence on connective covers.

The results of [Fri76Fri76] and [FP78FP78] on which this approach relies use lengthy computations in the co-
homology of various finite matrix groups. We shall now present an alternative and significantly shorter
proof of the Theorem 3.1.33.1.3 in the case of 𝑞 even, using Theorem 11 from the introduction. We recall that
GWs

cl(𝔽𝑞; 𝜖) → GW𝑠(𝔽𝑞; 𝜖) is an equivalence on connective covers, Corollary 1.3.151.3.15, so it suffices to prove
the following proposition, covering not only the Grothendieck-Witt space, but also the corresponding spec-
trum, and which applies to arbitrary shifts of the symmetric Poincaré structure:

3.1.4. Proposition. Let 𝑞 = 2𝑟 for some positive integer 𝑟. Then the map of spectra

GW(𝔽𝑞; (Ϙs)[𝑚]) ⟶ K(𝔽𝑞; (Ϙs)[𝑚])hC2

is an equivalence for every 𝑚 ∈ ℤ.

Proof. Corollary [IIII].4.4.144.4.14 provides, for every ring𝑅 and Poincaré structure Ϙ on Dp(𝑅), a pullback square

GW(𝑅; Ϙ) L(𝑅; Ϙ)

K(𝑅; Ϙ)hC2 K(𝑅; Ϙ)tC2 ,

It therefore suffices to show that the canonical map

(11) L(𝔽𝑞; (Ϙs)[𝑚]) ⟶ K(𝔽𝑞; (Ϙs)[𝑚])tC2

is an equivalence for every 𝑚. Applying the transformation L(−) → K(−)tC2 to the Bott-Genauer sequence
of Example [IIII].1.2.51.2.5 gives a commutative diagram

L(𝔽𝑞; (Ϙs)[𝑚]) Σ𝑚 L(𝔽𝑞; Ϙs)

K(𝔽𝑞; (Ϙs)[𝑚])tC2 Σ𝑚 K(𝔽𝑞; Ϙs)tC2

≃

≃

whose horizontal arrows are equivalences; see the discussion before Corollary R.10R.10. It will thus suffice to
treat the case𝑚 = 0. Furthermore, L and Tate of K-theory are 2-periodic, see Corollary R.10R.10, and it suffices
to check that (1111) induces an isomorphism on 𝜋0 and 𝜋1. By Corollary 1.3.31.3.3 we have that L0(𝔽𝑞; Ϙs) ≅
Ws(𝔽𝑞) ≅ ℤ∕2 is the Witt group of symmetric bilinear forms over 𝔽𝑞 , which is isomorphic to ℤ∕2 generated
by the class of the symmetric bilinear form (𝔽𝑞 , 𝑏) with 𝑏(1, 1) = 1. On the other hand, the same corollary
also gives that L1(𝔽𝑞; Ϙs) = 0. To finish the proof it will hence suffice to show that 𝜋1 K(𝔽𝑞; Ϙs)tC2 = 0, that
𝜋0 K(𝔽𝑞; Ϙs)tC2 = ℤ∕2, and that the map L0(𝔽𝑞; Ϙs) → 𝜋0 K(𝔽𝑞; Ϙs)tC2 is non-zero.

Now, by Quillen’s calculation of the K-theory of finite fields [Qui72Qui72], the K-groups K∗(𝔽𝑞) are odd
torsion groups in positive degrees, so that the map K(𝔽𝑞) → Hℤ is a 2-adic equivalence. It follows that
the induced map K(𝔽𝑞; Ϙs)tC2 → ℤtC2 is an equivalence as well, which shows that the Tate-K-groups are as
claimed.
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To finish the proof it will hence suffice to show that the map L0(𝔽𝑞; Ϙs) → 𝜋0(K(𝔽𝑞; Ϙs)tC2 ) sends the
generator to the generator. Indeed, in light of the commutative diagram

𝜋0Pn(Dp(𝔽𝑞), Ϙs) GW0(𝔽𝑞; Ϙs) L0(𝔽𝑞; Ϙs)

𝜋0Cr(Dp(𝔽𝑞), Ϙs)C2 K0(𝔽𝑞; Ϙs)C2 Ĥ0(C2,K0(𝔽𝑞; Ϙs))

this simply follows from the fact that the composed forgetful functor

𝜋0Pn(Dp(𝔽𝑞), Ϙs) ⟶ 𝜋0Cr(Dp(𝔽𝑞), Ϙs)C2 ⟶ K0(𝔽𝑞; Ϙs)C2 ⟶ K0(𝔽𝑞) ≅ ℤ

sends (𝔽𝑞 , 𝑏) to the generator 1 ∈ K0(𝔽𝑞). □

3.1.5. Remark. An alternative argument can be given making use of multiplicative structures: In Paper
[IVIV], we prove that the map L(𝑅; Ϙs) → K(𝑅; Ϙs)tC2 is a map of E∞-rings if 𝑅 is a commutative ring. For
𝑅 = 𝔽𝑞 with 𝑞 even, we then know that both homotopy rings are isomorphic to 𝔽2[𝑥±1], for |𝑥| = 2. As any
ring endomorphism of this ring is an isomorphism, the map we investigate is an equivalence.

3.1.6. Remark. Suppose 𝑘 is a perfect field of characteristic 2. In this case, the map 𝔽2 → 𝑘 induces
an equivalence on 2-complete K-theory and on L-theory. For K-theory, this follows from an analysis of
Adams operations on K(𝑘), see [Hil81Hil81, Theorem 5.4], and for L-theory it follows from Remark 1.3.51.3.5 that
the odd L-groups vanish in both cases. By 2-periodicity of L-theory, Corollary R.10R.10, and Corollary 1.3.141.3.14
together with Corollary 1.2.161.2.16, it therefore suffices to note that the map 𝔽2 → 𝑘 induces an isomorphism
on symmetric Witt groups. This in turn follows as every element in the symmetric Witt group of a field is
a sum of one-dimensional forms ⟨𝑥⟩ for 𝑥 ∈ 𝑘×. Since 𝑘 is perfect, the Frobenius is surjective and hence
⟨𝑥⟩ = ⟨𝑦2⟩ = ⟨1⟩ showing that the rank mod 2 map Ws(𝑘) → ℤ∕2 is an isomorphism for any perfect field
of characteristic 𝑘, including 𝔽2. Considering the commutative diagram

Ls(𝔽2) Ls(𝑘)

K(𝔽2)tC2 K(𝑘)tC2

≃

≃

≃

we deduce that the homotopy limit problem has an affirmative answer for every perfect field of characteristic
2.

The results of Berrick et al. [BKSØ15BKSØ15] on the homotopy limit problem extend significantly beyond the
realm of fields. It is shown, for example, that for any Noetherian scheme 𝑋 of finite Krull dimension over
ℤ[ 12 ] such that vcd2(𝑘(𝑥)) is uniformly bounded across all points 𝑥 ∈ 𝑋, the map

GW(𝑋) ⟶ K(𝑋)hC2

is an equivalence after 2-completion. Using the results of the previous sections we can now relax the
assumption that 2 is invertible from the above result. Recall that for a Dedekind ring 𝑅 with line bundle 𝑀
with involution ±1, the canonical map

GWs
cl(𝑅;𝑀) ⟶ GW(𝑅; Ϙs𝑀 )

is an equivalence in non-negative degrees, by Corollary 1.3.151.3.15. Combining this with the following result
gives Theorem 22 from the introduction.

3.1.7. Theorem (The homotopy limit problem). Let 𝑅 be a Dedekind ring whose fraction field is a number
field. Then for every 𝑚 ∈ ℤ and every line bundle 𝑀 over 𝑅 with involution ±1, the map

GW(𝑅; (Ϙs𝑀 )[𝑚]) ⟶ K(𝑅; (Ϙs𝑀 )[𝑚])hC2

is a 2-adic equivalence.
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Proof. Let 𝑆 be the (finite) set of all prime ideals in 𝑅 lying over 2. We observe that then 𝑅𝑆 = 𝑅[ 12 ] and
similarly that 𝑀𝑆 =𝑀[ 12 ] and consider the commutative diagram

⊕𝔭∈𝑆 GW(𝔽𝔭; (Ϙs𝑀𝔭
)[𝑚−1]) GW(𝑅; (Ϙs𝑀 )[𝑚]) GW(𝑅[ 12 ]; (Ϙ

s
𝑀𝑆

)[𝑚])

⊕𝔭∈𝑆 K(𝔽𝔭; (Ϙs𝑀𝔭
)[𝑚−1])hC2 K(𝑅; (Ϙs𝑀 )[𝑚])hC2 K(𝑅[ 12 ]; (Ϙ

s
𝑀𝑆

)[𝑚])hC2

obtained via the localisation-dévissage sequences of Corollary 2.2.52.2.5. Note that we have commuted the
homotopy fixed points with the finite direct sum in the lower left corner. The left most vertical map is an
equivalence by Proposition 3.1.43.1.4, and the right most vertical map is a 2-adic equivalence by [BKSØ15BKSØ15,
Theorem 2.2]: We need to argue that all residue fields of 𝑅[ 12 ] have finite mod 2 virtual cohomological
dimension. Indeed, the residue fields at non-zero prime ideals are finite fields and hence have cohomological
dimension one (the Galois group is ℤ̂), and the residue field at 0 is the fraction field which is number field
and hence also has finite vcd2; [Ser02Ser02, §II.4.4]. It then follows that the middle vertical map is a 2-adic
equivalence, as desired. □

3.1.8. Remark. The conclusion of Theorem 3.1.73.1.7 thus holds for all Dedekind rings whose field of fractions
is a global field of characteristic different from 2: In the odd characteristic case [BKSØ15BKSØ15] applies, and the
case of characteristic zero is the content of Theorem 3.1.73.1.7.

3.1.9. Remark. Suppose again that 𝑅 is a Dedekind ring with global fraction field 𝐾 . Suppose that 𝐾
has characteristic different from 2 and is not formally real, that is, that −1 is a sum of squares. In other
words, suppose that 𝐾 has positive odd characteristic or is a totally imaginary number field. Then the Witt
group Ws(𝐾) is a 2-primary torsion group of bounded exponent by [Sch12Sch12, Theorem 2.7.9]. As Ws(𝑅) is
a subgroup of Ws(𝐾), see the proof of Proposition 2.3.12.3.1, Corollary 2.3.22.3.2 implies that Ls(𝑅) is (derived)
2-complete. As K(𝑅)tC2 is also 2-complete, the pullback

GW(𝑅; Ϙs) L(𝑅; Ϙs)

K(𝑅; Ϙs)hC2 K(𝑅; Ϙs)tC2

together with Theorem 3.1.73.1.7 implies that the map of Theorem 3.1.73.1.7 is in fact an equivalence before 2-
completion. Conversely, if 𝐾 admits a real embedding, then Ls(𝑅) is not 2-complete: We have seen in
Corollary 2.3.162.3.16 that all homotopy groups are finitely generated, so Ls(𝑅) is 2-complete if and only if all
symmetric L-groups of 𝑅 are 2-complete. However, as observed in the proof of Corollary 2.3.162.3.16, Ws(𝑅)
has rank equal to the number of real embeddings of 𝐾 , and is thus not 2-complete. It hence follows that
the map under investigation in Theorem 3.1.73.1.7 is not an integral equivalence if 𝐾 admits a real embedding.
See also [BKSØ15BKSØ15, Theorem 2.4 & Proposition 4.7]. In fact, in our situation, the same result is true for
Ws(𝑅;𝑀) for any line bundle 𝑀 on 𝑅: The map Ws(𝑅;𝑀) → Ws(𝐾) is an isomorphism after inverting
2, and the map Ws(𝐾) → Ws(ℝ) induced from a real embedding of 𝐾 is surjective. Hence the composite
is non-zero and consequently ℤ is a direct summand inside Ws(𝑅;𝑀). Hence Ls(𝑅;𝑀) is not 2-complete.

As a side remark, we note that in the case where 𝐾 admits a real embedding, Ls(𝑅) contains L𝑠(ℝ) as a
retract, and Ls(ℝ) is not 2-complete. To see that Ls(ℝ) is indeed a retract, consider the following composite

Ls(ℤ) ⟶ Ls(𝑅) ⟶ Ls(ℝ)

where the two maps are induced by the canonical map ℤ → 𝑅 and the map 𝑅 → 𝐾 ⊆ ℝ induced by a real
embedding of 𝐾 . This composite admits a splitting, as was observed in [HLN20HLN20, Theorem A].

3.1.10. Remark. The proof of Theorem 3.1.73.1.7 reveals that the assumptions are not optimal. Assume for
instance that 𝑅 is the ring of integers in a non-archimedean local field 𝐾 of mixed characteristic (0, 2) and
let 𝑘 be the residue field of the local ring 𝑅. For instance, assume that 𝑅 is a dyadic completion of the ring
of integers in a number field. Since 𝑅 is local the line bundle 𝑀 is trivial. We again consider the diagram
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consisting of horizontal fibre sequences

GW(𝑘; (Ϙs)[𝑚−1]) GW(𝑅; (Ϙs)[𝑚]) GW(𝐾; (Ϙs)[𝑚])

K(𝑘; (Ϙs)[𝑚−1])hC2 K(𝑅; (Ϙs)[𝑚])hC2 K(𝐾; (Ϙs)[𝑚])hC2

First, we note that cd2(𝐾) = 2 [Ser02Ser02, §4.3], so the right vertical map is a 2-adic equivalence. We deduce
that the middle vertical map is a 2-adic equivalence if and only if the left vertical map is a 2-adic equivalence.
Thus if we assume that 𝑘 is a finite field, the middle vertical map is a 2-adic equivalence. In fact, in this
case, 𝐾 is a finite extension of ℚ∧

2, and as observed earlier, Ls(𝐾) is 2-complete, in fact 2-power torsion
[Lam05Lam05, Theorem 2.29]. It follows that the middle vertical map is in fact an equivalence.

The proof of Theorem 3.1.73.1.7 allows us to also deduce the following result, which, in case of the integers
was conjectured by Berrick and Karoubi [BK05BK05].

3.1.11. Proposition. Let 𝑅 be a Dedekind ring whose fraction field is a global field of characteristic zero.
Then the map

GWs(𝑅; 𝜖) ⟶ GWs(𝑅[ 12 ]; 𝜖)
is a 2-local equivalence on connected covers and injective in 𝜋0.

Proof. The fibre of the map in question is given by a sum of terms of the kind GW(𝔽𝔭; (Ϙs𝜖)
[−1]), with 𝔽𝔭

a finite field of characteristic 2 by Corollary 2.2.52.2.5. It therefore suffices to show that each of these terms is
2-locally (−1)-truncated and has trivial 𝜋0. To see this, we note that the map

GW(𝔽𝔭; (Ϙs𝜖)
[−1]) ⟶ K(𝔽𝔭; (Ϙs𝜖)

[−1])hC2

is an equivalence by Proposition 3.1.43.1.4. Let us denote by ℤ(−1) the complex ℤ in degree 0 with the sign
action of C2. The map K(𝔽𝔭; (Ϙs𝜖)

[−1]) → ℤ(−1) is a C2-equivariant map whose fibre has finite and odd
torsion homotopy groups. It follows upon applying (−)hC2 that this map is 1-connective and a 2-local
equivalence. The proposition follows. □

3.1.12. Remark. Using Remark 3.1.63.1.6, one obtains the following variant of Proposition 3.1.113.1.11. Namely, let
𝑅 be a Dedekind ring of characteristic zero such that all residue fields of dyadic primes are perfect. Then
the map

GWs(𝑅; 𝜖)∕2 ⟶ GWs(𝑅[ 12 ]; 𝜖)∕2

is (−1)-truncated. For this, we simply need to know that for a perfect field 𝑘 of characteristic 2, 𝐾(𝑘)∕2 is
0-truncated, i.e. the higher K-groups K𝑛(𝑘), for 𝑛 ≥ 1, are uniquely 2-divisible. In general, this of course
does not imply that these groups vanish after localisation at 2, but it is the case for instance for an algebraic
closure of 𝔽2. Whenever the residue fields satisfy the property that 𝐾(𝑘)(2) ≃ ℤ(2), the same argument as
in the proof of Proposition 3.1.113.1.11 applies.

Finally, we note that every perfect field 𝑘 of positive characteristic 𝑝 is the residue field of a characteristic
0 Dedekind ring, namely the (complete) discrete valuation ring 𝑊 (𝑘) of 𝑝-typical Witt vectors on 𝑘.

We finish this subsection by noting the following obstruction to a positive solution of the homotopy limit
problem for classical Grothendieck-Witt-theory of a discrete ring 𝑅, see also [BKSØ15BKSØ15, Remark 4.9]. In
particular, Proposition 3.1.133.1.13 implies that the map GWs

cl(𝑅)∕2 → K(𝑅)hC2∕2 cannot be an equivalence in
non-negative degrees unless the comparison mapLgs(𝑅) → Ls(𝑅) is so as well. Recall from Example 1.3.111.3.11
that there are rings for which this is not the case.

3.1.13. Proposition. Suppose that the map GWs
cl(𝑅;𝑀)∕2 → K(𝑅)hC2∕2 is 𝑛-truncated for some natu-

ral number 𝑛, where we view GWs
cl(𝑅;𝑀)∕2 as a (connective) spectrum. Then the map Lgs(𝑅;𝑀) →

Ls(𝑅;𝑀) is (𝑛 − 1)-truncated.

Proof. By Proposition 3.1.143.1.14 below, the map Lgs(𝑅;𝑀) → Ls(𝑅;𝑀) is an equivalence after invert-
ing 2. Therefore, once we show that the map Lgs(𝑅;𝑀)∕2 → Ls(𝑅;𝑀)∕2 is 𝑛-truncated, it follows
that the map Lgs(𝑅;𝑀) → Ls(𝑅;𝑀) is (𝑛 − 1)-truncated as claimed. We first observe that the map
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GWgs(𝑅;𝑀)∕2 → K(𝑅)hC2∕2 is also 𝑛-truncated, because the map GWs
cl(𝑅;𝑀)∕2 → GWgs(𝑅;𝑀)∕2

is 0-truncated by [HS21HS21]. We then consider the pullback diagram

GWgs(𝑅;𝑀)∕2 Lgs(𝑅;𝑀)∕2

K(𝑅)hC2∕2 K(𝑅)tC2∕2

and conclude that the map Lgs(𝑅;𝑀)∕2 → K(𝑅)tC2∕2 is 𝑛-truncated as well. Then we recall that there are
canonical shift maps

⋯ ⟶ Σ4 Lgs(𝑅;𝑀)
𝜎

⟶ Lgs(𝑅;𝑀)
𝜎

⟶ Σ−4 Lgs(𝑅;𝑀) ⟶ ⋯

whose filtered colimit is given byLs(𝑅;𝑀). It therefore suffices to show thatLgs(𝑅;𝑀)∕2 → Σ−4 Lgs(𝑅;𝑀)∕2
is 𝑛-truncated. For this we consider the diagram

Lgs(𝑅;𝑀)∕2 Σ−4 Lgs(𝑅;𝑀)∕2

K(𝑅)tC2∕2 Σ−4 K(𝑅)tC2∕2

𝜎

𝜎′

and note that the lower horizontal map is an equivalence. Furthermore, the left vertical map is 𝑛-truncated
and the right vertical map is (𝑛−4)-truncated. We deduce that the upper horizontal map is also 𝑛-truncated.

□

We finish this section with the promised calculation of 2-inverted genuine L-theory. At this point, we
will invoke multiplicative structures on L-theory which we develop in detail in Paper [IVIV].

3.1.14. Proposition. Let 𝑅 be a ring with invertible ℤ-module with involution 𝑀 , and let 𝑚 ∈ ℤ ∪ {±∞}.
Then the natural map

L(𝑅; Ϙ≥𝑚𝑀 )[ 12 ] ⟶ L(𝑅; Ϙs𝑀 )[ 12 ]

is an equivalence.

Proof. We first observe that the canonical map Lgs(ℤ) → Ls(ℤ) is an equivalence after inverting 2, see
Example 2.3.132.3.13. Moreover, the shift maps appearing in the proof of Proposition 3.1.133.1.13 are in fact given by
multiplication with an element 𝑥 ∈ Lgs

4 (ℤ), namely the Poincaré object ℤ[−2] with its standard genuine
symmetric Poincaré structure of signature 1. Thus we find

L(𝑅; Ϙs𝑀 ) ≃ L(𝑅; Ϙ≥𝑚𝑀 )[𝑥−1] ≃ L(𝑅; Ϙ≥𝑚𝑀 )⊗Lgs(ℤ) Ls(ℤ),

and the result follows. □

3.2. Grothendieck-Witt groups of the integers. In this section, we will specialise the results established
earlier in the paper to the ring of integersℤ, and calculate its classical 𝜖-symmetric and 𝜖-quadratic Grothendieck-
Witt groups. We will exploit Corollary 1.3.141.3.14 and instead calculate the non-negative Grothendieck-Witt
groups GWs(ℤ; 𝜖) = GW(ℤ; Ϙs𝜖) for the non-genuine symmetric Poincaré structure. Our calculation cru-
cially relies on the knowledge of the algebraic K-groups [Wei13Wei13] of ℤ, and on the calculations of Berrick-
Karoubi [BK05BK05] of the Grothendieck-Witt groups of ℤ[ 12 ]. Before we start the computation, we give a brief
account of the 4 types of classical Grothendieck-Witt groups that we are considering.

(1)-Symmetric: We recall that GWs
cl(ℤ) denotes the homotopy theoretic group completion of the maximal

subgroupoid of the category of non-degenerate symmetric bilinear forms over ℤ. By [Ser61Ser61, Théorème 1],
there is an isomorphism 𝜋0 GW

s
cl(ℤ) ≅ ℤ ⊕ ℤ where the summands are generated by the classes of the

forms ⟨1⟩ and ⟨−1⟩ on a free module of rank 1 ℤ; they send (𝑥, 𝑦) to 𝑥𝑦 and −𝑥𝑦, respectively. We write
O
⟨𝑛,𝑛⟩(ℤ) = Aut((⟨1⟩ ⟂ ⟨−1⟩)⟂𝑛) ⊆ GL2𝑛(ℤ) and O

⟨∞,∞⟩

(ℤ) = colim𝑛 O⟨𝑛,𝑛⟩(ℤ). Then the commutator
subgroup of O

⟨∞,∞⟩

(ℤ) is perfect by e.g. [RW13RW13, Proposition 3.1]. Moreover, it is a direct consequence of
[Ser61Ser61, Théorème 4] that any non-degenerate symmetric bilinear form over ℤ is an orthogonal summand
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in (⟨1⟩ ⟂ ⟨−1⟩)⟂𝑛 for some 𝑛 ≥ 0. Hence, the group completion theorem yields a homotopy equivalence
of spaces

𝜏>0 GW
s
cl(ℤ) ≃ BO

⟨∞,∞⟩

(ℤ)+,
see [MS76MS76], or [RW13RW13, Corollary 1.2].

(−1)-Symmetric: Similarly GW−s
cl (ℤ) is the homotopy theoretic group completion of the maximal sub-

groupoid of the category of non-degenerate symplectic bilinear forms over ℤ. We let H−s be the standard
symplectic bilinear form onℤ2. As every symplectic form overℤ is isomorphic to a finite orthogonal sum of
copies of H−s, we find 𝜋0 GW−s

cl (ℤ) ≅ ℤ, generated by H−s. We write Sp2𝑛(ℤ) = Aut((H−s)⟂𝑛) ⊆ GL2𝑛(ℤ)
and Sp∞(ℤ) = colim𝑛 Sp2𝑛(ℤ). The group Sp∞(ℤ) is again perfect, see e.g. [RW13RW13, Proposition 3.1], and
the group completion theorem yields a homotopy equivalence of spaces

𝜏>0 GW
−s
cl (ℤ) ≃ BSp∞(ℤ)+.

(1)-Quadratic: Now GWq
cl(ℤ) is the homotopy theoretic group completion of the maximal subgroupoid of

the category of non-degenerate quadratic forms over ℤ. Let Hq be the standard hyperbolic quadratic form
and 𝐸8 the classical 8-dimensional quadratic form associated to the Dynkin diagram of the same name.
By [Ser61Ser61, Théorème 5], every quadratic form (𝑃 , 𝑞) satisfies 𝑃 ⊕ Hq ≅ H𝑛q ⊕ 𝐸𝑚8 for some 𝑛 and 𝑚 and
𝜋0 GW

q
cl(ℤ) ≅ ℤ ⊕ ℤ with generators Hq and 𝐸8. We write O𝑛,𝑛(ℤ) = Aut((Hq)⊕𝑛) ⊆ GL2𝑛(ℤ) and

O∞,∞(ℤ) = colim𝑛 O𝑛,𝑛(ℤ). As above the group O∞,∞(ℤ) has perfect commutator subgroup and since any
quadratic form over ℤ is a direct summand of (Hq)⟂𝑛 for some 𝑛 ≥ 0 there is a homotopy equivalence of
spaces

𝜏>0 GW
q
cl(ℤ) ≃ BO∞,∞(ℤ)+.

(−1)-Quadratic: Finally, GW−q
cl (ℤ) is similarly built from (−1)-quadratic forms over ℤ. Such a form is

determined by its rank (which is an even number) and its Arf invariant, see [Bro12Bro12, §III.1]. Let

H0
−q =

(

ℤ2,
(

0 1
−1 0

)

, 𝑥𝑦
)

and H1
−q =

(

ℤ2,
(

0 1
−1 0

)

, 𝑥2 + 𝑥𝑦 + 𝑦2
)

,

be the standard hyperbolic (−1)-quadratic forms with Arf invariant 0 and 1, respectively. Then every (−1)-
quadratic form with Arf invariant 0 is isomorphic to a direct sum of copies of H0

−q, and every (−1)-quadratic
form with Arf invariant 1 is isomorphic to a direct sum of copies of H0

−q plus one copy of H1
−q. Thus,

𝜋0 GW
−q
cl ≅ ℤ⊕ℤ∕2. We define Spq2𝑛(ℤ) = Aut((H0

−q)
⟂𝑛) ⊆ Sp2𝑛(ℤ) to be the group of matrices preserving

both the bilinear form and its quadratic refinement and set Spq∞(ℤ) = colim𝑛 Sp
q
2𝑛(ℤ). As above, the group

completion theorem yields a homotopy equivalence of spaces
𝜏>0 GW

−q
cl (ℤ) ≃ BSpq∞(ℤ)+.

The Grothendieck-Witt groups of ℤ. We now proceed to calculate the 𝜖-symmetric Grothendieck-Witt
groups of ℤ. Recall that the Bernoulli numbers {𝐵𝑛}𝑛≥0 are rational numbers determined by the equa-
tion

𝑥
𝑒𝑥 − 1

=
∞
∑

𝑛=0

𝐵𝑛
𝑛!
𝑥𝑛.

We write 𝑐𝑛 for the numerator of |𝐵2𝑛
4𝑛 | which is an odd number. For each 𝑘 ≥ 0 we have the equations

|K8𝑘+2(ℤ)| = 2 ⋅ 𝑐2𝑘+1 and |K8𝑘+6(ℤ)| = 𝑐2𝑘+2,

by [Wei13Wei13, Theorem 10.1], and if the Vandiver conjecture holds the groups in question are cyclic. The
denominator of |𝐵2𝑛

4𝑛 | will be denoted by 𝑤2𝑛. There are isomorphisms

K8𝑘+3(ℤ) ≅ ℤ∕2𝑤4𝑘+2 and K8𝑘+7(ℤ) ≅ ℤ∕𝑤4𝑘+4,

for all 𝑘 ≥ 0 by [Wei13Wei13, Theorem 10.1].
We now arrive at the main computation of the 𝜖-symmetric Grothendieck-Witt groups of ℤ in degree

𝑛 ≥ 1. We determine these groups completely up to the precise group structure in degrees which are 2
mod 4, which depend on Vandiver’s conjecture. Thanks to the work of Weibel [Wei13Wei13] on the algebraic
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K-theory of ℤ the last uncertainty can be removed in the range 𝑛 ≤ 20000, see Remark 3.2.23.2.2 below. For an
abelian group 𝐴, we write 𝐴odd for the odd torsion subgroup of 𝐴.

3.2.1. Theorem. The classical 𝜖-symmetric Grothendieck-Witt groups ℤ are given in degrees 𝑛 ≥ 1 by the
following table:

𝑛 = GWs
cl,𝑛(ℤ) GW−s

cl,𝑛(ℤ)
8𝑘 ℤ⊕ ℤ∕2 0

8𝑘 + 1 (ℤ∕2)3 0
8𝑘 + 2 (ℤ∕2)2 ⊕ K8𝑘+2(ℤ)odd ℤ⊕ K8𝑘+2(ℤ)odd
8𝑘 + 3 ℤ∕𝑤4𝑘+2 ℤ∕2𝑤4𝑘+2
8𝑘 + 4 ℤ ℤ∕2
8𝑘 + 5 0 ℤ∕2
8𝑘 + 6 K8𝑘+6(ℤ)odd ℤ⊕ K8𝑘+6(ℤ)odd
8𝑘 + 7 ℤ∕𝑤4𝑘+4 ℤ∕𝑤4𝑘+4

3.2.2. Remark. For𝑚 ≤ 5000 the group (K4𝑚−2)odd is known to be cyclic of order 𝑐𝑚, see [Wei13Wei13, Example
10.3.2]. This holds for all 𝑚 if Vandiver’s conjecture is true [Wei13Wei13, Theorem 10.2].

3.2.3. Remark. The number𝑤2𝑛 is equal to the cardinality of the image of the 𝐽 -homomorphism𝜋4𝑛−1(𝑂) →
𝜋4𝑛−1(𝕊) in the stable stem. By [Qui76Qui76, pg. 186] the unit map 𝜋4𝑛−1(𝕊) → K4𝑛−1(ℤ) is injective on this
image. Since the unit map for K(ℤ) factors through the unit map for GWs

cl(ℤ), it follows that the groups
GWs

cl,8𝑘+3(ℤ) and GWs
cl,8𝑘+7(ℤ) consist precisely of image of 𝐽 -classes.

Proof of Theorem 3.2.13.2.1. Since the groups in question are finitely generated, it suffices to prove that the
theorem holds after localisation at 2 and after inverting 2. First, we argue 2-locally. Proposition 3.1.113.1.11 and
Corollary 1.3.151.3.15 imply that for 𝜖 = ±1, the canonical map

GWs
cl(ℤ; 𝜖) ⟶ GWs

cl(ℤ[
1
2 ]; 𝜖)

is a 2-local equivalence in degrees ≥ 1. One can then compare with [BK05BK05, Theorem B]11, where the 2-local
GW-groups of ℤ[ 12 ] are determined as displayed. In order to compare their values for 8𝑘+3 and 8𝑘+7 with
ours, note that by work of von Staudt the largest power of 2 which divides 𝑤2𝑛 is the same as the largest
power of 2 which divides 8𝑛.

For the 2-inverted case, we observe that the fibre sequence
K(ℤ; 𝜖)hC2

⟶ GWs(ℤ; 𝜖) ⟶ Ls(ℤ; 𝜖)
from Theorem 11 splits after inverting 2, see e.g. Corollary [IIII].4.4.164.4.16, so that there is an equivalence of
spectra

GWs(ℤ; 𝜖)[ 12 ] ≃ (K(ℤ; 𝜖)hC2
)[ 12 ]⊕ Ls(ℤ; 𝜖)[ 12 ]

Furthermore, we note that there is an isomorphism 𝜋𝑛(K(ℤ; 𝜖)hC2
[ 12 ]) ≅ (K𝑛(ℤ; 𝜖)[

1
2 ])C2

. It then follows
from Lemma 3.2.43.2.4 below that

GWs
𝑛(ℤ; 𝜖)[

1
2 ] ≅

{

Ls
𝑛(ℤ; 𝜖)[

1
2 ] for 𝑛 ≡ 0, 1 mod 4

K𝑛(ℤ; 𝜖)[
1
2 ]⊕ Ls

𝑛(ℤ; 𝜖)[
1
2 ] for 𝑛 ≡ 2, 3 mod 4

This matches with the values in the above table after tensoring with ℤ[ 12 ] and so the desired result follows.
□

We thank Søren Galatius for telling us about the following lemma, see also [FGV20FGV20, §2]. Let 𝐹 be a
number field and O a ring of 𝑆-integers in 𝐹 .

3.2.4. Lemma. TheC2-actions induced by the Poincaré structures Ϙ𝑠 and Ϙ𝑠− onDp(O) induce multiplication
by (−1)𝑛 on the groups K2𝑛−1(O)[

1
2 ] and K2𝑛−2(O)[

1
2 ] for each 𝑛 ≥ 2.

1Note that what we denote GW is denoted L in loc. cit. and that the homotopy groups of L(𝑅) are denoted by 𝐿𝑖(𝑅).
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Proof. We first note that the dualities associated to Ϙs and Ϙs− have the same underlying equivalences
Dp(O) → Dp(O)op so that the induced C2-action on homotopy groups is the same in both cases. Hence
it will suffice to prove the claim for Ϙs. Since the K-groups of O are finitely generated, it suffices to
prove the claim on the 𝓁-completed K-groups K𝑛(O)∧𝓁 for all odd primes 𝓁. We then use that the map
K𝑛(O)∧𝓁 → 𝜋𝑛(Két(O[ 1

𝓁
])∧𝓁) is an isomorphism for 𝑛 ≥ 0, see e.g. [CM19CM19, Theorem 1.2] for a more general

statement. In particular, the étale descent spectral sequence, see e.g. [CM19CM19, Theorem 1.3] is a convergent
spectral sequence

𝐸𝑠,𝑛2 = H𝑠ét(spec(O[
1
𝓁
]);ℤ∧

𝓁(𝑛∕2)) ⟹ 𝜋𝑛−𝑠(K(O)∧𝓁)

for 𝑛 − 𝑠 ≥ 0. Here ℤ∧
𝓁(𝑛∕2) is the homotopy sheaf 𝜋𝑛(K(−)) on the étale site of spec(O[ 1

𝓁
]), which by

results of Gabber and Suslin is (as an abelian group) given by 𝜋𝑛(ku∧
𝓁) and hence vanishes for odd values

of 𝑛. We note that the descent spectral sequence is natural with respect to 𝜓−1, i.e. the dualisation action,
which acts on ℤ∧

𝓁(𝑛) by (−1)𝑛. Now, the 𝓁-adic étale cohomological dimension of spec(O[ 1
𝓁
]) is 2, so the

spectral sequence above is concentrated in the columns 0, 1 and 2. In addition

H0
ét(spec(O[

1
𝓁
]);ℤ∧

𝓁(𝑛)) = 0 for 𝑛 > 0.

In particular, the spectral sequence collapses at 𝐸2 and gives isomorphisms

𝜋2𝑛−2(K(O)) ≅ H2
ét(spec(O[

1
𝓁
]);ℤ∧

𝓁(𝑛)) and 𝜋2𝑛−1(K(O)) ≅ H1
ét(spec(O[

1
𝓁
]);ℤ∧

𝓁(𝑛))

for 𝑛 ≥ 2, from which the lemma follows.
□

3.2.5. Remark. A calculation of the Grothendieck-Witt groups of the integers has also been announced
in [Sch19bSch19b], but with different odd torsion: in loc. cit. it is claimed that the C2-action on K∗(ℤ)[

1
2 ] is

multiplication by (−1)𝑛+1 on K2𝑛−2(ℤ)[
1
2 ] and K2𝑛−1(ℤ)[

1
2 ], but we believe this comes from an error in

equation (3.3) of [Sch19bSch19b, Proof of Lemma 3.1].
In low degrees the groups can be worked out explicitly.

3.2.6. Proposition. The first 24 non-negative Grothendieck-Witt groups of ℤ are given by the table 3.2.63.2.6
below.

TABLE 1. The first 24 Grothendieck-Witt groups of ℤ

𝑘 GWs
𝑘(ℤ) 𝑘 GW𝑠

𝑘(ℤ) 𝑘 GW𝑠
𝑘(ℤ)

0 ℤ⊕ ℤ 8 ℤ⊕ ℤ∕2 16 ℤ⊕ ℤ∕2
1 (ℤ∕2)3 9 (ℤ∕2)3 17 (ℤ∕2)3
2 (ℤ∕2)2 10 (ℤ∕2)2 18 (ℤ∕2)2
3 ℤ∕24 11 ℤ∕504 19 ℤ∕264
4 ℤ 12 ℤ 20 ℤ
5 0 13 0 21 0
6 0 14 0 22 ℤ∕691
7 ℤ∕240 15 ℤ∕480 23 ℤ∕65520

Proof. The only information not already present in the table of Theorem 3.2.13.2.1 is the structure of the odd
torsion in K𝑛(ℤ) for 𝑛 = 2, 6 mod 8. This can be read off from the list of K-groups [Wei13Wei13, Example 10.3]
- the only non-trivial one in this range is K22(ℤ) = ℤ∕691. □

We now turn to the computation of the classical 𝜖-quadratic Grothendieck-Witt groups of ℤ. Recall
that for 𝜖 = ±1 there is a Poincaré functor (Dp(ℤ), Ϙgq𝜖 ) → (Dp(ℤ), Ϙgs𝜖 ), which by the fibre sequence of
Corollary [IIII].4.4.144.4.14 induces a cartesian square of spectra

GWgq(ℤ; 𝜖) Lgq(ℤ; 𝜖)

GWgs(ℤ; 𝜖) Lgs(ℤ; 𝜖).
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𝑘 GW−s
𝑘 (ℤ) 𝑘 GW−s

𝑘 (ℤ) 𝑘 GW−s
𝑘 (ℤ)

0 ℤ 8 0 16 0
1 0 9 0 17 0
2 ℤ 10 ℤ 18 ℤ
3 ℤ∕48 11 ℤ∕1008 19 ℤ∕528
4 ℤ∕2 12 ℤ∕2 20 ℤ∕2
5 ℤ∕2 13 ℤ∕2 21 ℤ∕2
6 ℤ 14 ℤ 22 ℤ⊕ ℤ∕691
7 ℤ∕240 15 ℤ∕480 23 ℤ∕65520

The non-negative homotopy groups of the bottom left hand spectrum were computed in Theorem 3.2.13.2.1
above. To understand the spectrum GWgq(ℤ; 𝜖) we will calculate the homotopy groups of the cofibre of the
right hand vertical map, which is equivalent to the cofibre of the left hand vertical map. We begin with the
case 𝜖 = 1. Write 𝐶 for the cofibre of the map Lgq(ℤ) → Lgs(ℤ) and 𝐶𝑖 for the homotopy group 𝜋𝑖(𝐶).

3.2.7. Lemma. The groups 𝐶𝑖 are given by
i) 𝐶1 ≅ ℤ∕2,

ii) 𝐶0 ≅ ℤ∕8
iii) 𝐶−1 ≅ ℤ∕2,
iv) 𝐶𝑖 = 0 for all other values of 𝑖.

Proof. Let us consider the commutative diagram

Lgq(ℤ)

Lq(ℤ) Ls(ℤ)

Lgs(ℤ),

≃≥2≃≤1

≃≤−3 ≃≥−2

where the subscript on the symbol ≃ indicates the range of dimensions 𝑖 in which the map induces an
isomorphism on 𝜋𝑖. These ranges are obtained from Corollaries 1.2.121.2.12 and 1.3.91.3.9, in the second case using
that by Example 1.1.41.1.4 the Poincaré structures Ϙgq = Ϙge and Ϙgs = Ϙ≥(−1) are 1-symmetric and 3-symmetric,
respectively. Using in addition that Lgs

−2(ℤ) = 0, it follows that 𝐶𝑖 is at most non-trivial in the range
−1 ≤ 𝑖 ≤ 1 as claimed. We then find that 𝐶−1 ≅ Lgq

−2(ℤ) ≅ Lq
−2(ℤ) ≅ ℤ∕2. The remaining two groups sit

in the exact sequence
0 ⟶ Lgs

1 (ℤ) ⟶ 𝐶1 ⟶ Lgq
0 (ℤ) ⟶ Lgs

0 (ℤ) ⟶ 𝐶0 → 0.

Since the map Lgq
0 (ℤ) → Lgs

0 (ℤ) identifies with the multiplication by 8 map on ℤ it follows that 𝐶0 ≅ ℤ∕8
and 𝐶1 ≅ Lgs

1 (ℤ) ≅ ℤ∕2; see [Ran81Ran81, Prop 4.3.1]. □

3.2.8. Remark. Let us denote by L𝑛(𝑅) the cofibre of the symmetrisation map Lq(𝑅) → Ls(𝑅), called
normal or hyperquadratic L-theory in Ranicki’s work [Ran79Ran79, Ran92Ran92]. We then have 𝐶 ≃ 𝜏[−1,1] L𝑛(ℤ).

3.2.9. Theorem. The classical quadratic Grothendieck-Witt groups of ℤ are given by
i) GWgq

0 (ℤ) ≅ ℤ⊕ ℤ,
ii) GWgq

1 (ℤ) ≅ ℤ∕2⊕ ℤ∕2,
iii) GWgq

𝑛 (ℤ) ≅ GWgs
𝑛 (ℤ) for 𝑛 ≥ 2.

Proof. The group GWgq
0 (ℤ) is well known to be freely generated by the standard hyperbolic form and the

positive definite even form 𝐸8 (see the discussion at the beginning of the section). For ii)ii) consider the exact
sequence

𝐶2 → GWgq
1 (ℤ) → GWgs

1 (ℤ) → 𝐶1 → GWgq
0 (ℤ) → GWgs

0 (ℤ).
The map GWgq

0 (ℤ) → GWgs
0 (ℤ) is injective and the image has index 8. It follows that GWgs

1 (ℤ) ≅ (ℤ∕2)3

maps surjectively onto 𝐶1 ≅ ℤ∕2 and since 𝐶2 = 0 by Lemma 3.2.73.2.7 we get that GWgq
1 (ℤ) ≅ (ℤ∕2)2.

Finally, iii)iii) is implied by Lemma 3.2.73.2.7iii)iii). □
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We now turn to the case 𝜖 = −1.

3.2.10. Lemma. Let 𝐷 be the cofibre of the map L−gq(ℤ) → L−gs(ℤ). Then 𝐷 ≃ Σ2𝐶 .

Proof. By Proposition R.6R.6 and Remark R.4R.4, we have canonical equivalences L−gq(ℤ) ≃ Σ2 Lgq(ℤ) and
L−gs(ℤ) ≃ Σ2 Lgs(ℤ). Under these equivalences, the symmetrisation map in the definition of𝐷 corresponds
to the double suspension of the one in the definition of 𝐶 . □

3.2.11. Lemma. There are group isomorphisms
i) 𝜋1 K(ℤ; Ϙgq− )hC2

≅ ℤ∕4,
ii) 𝜋2 K(ℤ; Ϙgq− )hC2

= 0.

Proof. Since the involution on K(ℤ; Ϙgq− ) only depends on the underlying duality the canonical map

𝜋𝑛 K(ℤ; Ϙgq− )hC2
→ 𝜋𝑛 K(ℤ; Ϙs−)hC2

is an isomorphism, and we shall henceforth replace Ϙgq− with Ϙs−.
We first compute 𝜋1 K(ℤ; Ϙs−)hC2

. Consider the homotopy orbit spectral sequence

𝐸2
𝑠,𝑡 = H𝑠(C2;𝜋𝑡 K(ℤ; Ϙs−)) ⟹ 𝜋𝑠+𝑡 K(ℤ; Ϙs−)hC2

.

Since H2(C2;𝜋0 K(ℤ; Ϙs−)) = 0 the generator of H0(C2;𝜋1 K(ℤ; Ϙs−)) ≅ ℤ∕2 is not an eventual boundary.
The group 𝜋1 K(ℤ; Ϙs−)hC2

also gets a contribution from H1(C2;𝜋0 K(ℤ; Ϙs−)) which has order 2, so in total
it must have order 4. There is furthermore an exact sequence

L−s
2 (ℤ) → 𝜋1 K(ℤ; Ϙs−)hC2

→ GW−s
1 (ℤ),

where the left hand group is isomorphic to Ls
0(ℤ) ≅ ℤ and the right hand group is trivial by Table 3.2.63.2.6. It

follows that the middle group is cyclic and is hence isomorphic to ℤ∕4.
We will now compute 𝜋2 K(ℤ; Ϙs−)hC2

. For this, it will be useful to embed ℤ in the field ℝ of real
numbers, and consider the topological variants of K-theory and GW-theory for ℝ, equipped with its usual
topology. For this we follow the approach of [Sch17Sch17, §10] and define these in terms of the simplicial
ring ℝΔ∙ ∈ Fun(Δop,Ring), whose 𝑛-simplices are the set ℝΔ𝑛 of continuous maps of topological spaces
|Δ𝑛| → ℝ, considered as a ring via pointwise operations. One then defines the topological variants of
K-theory, GW-theory and L-theory by

Ktop(ℝ) ∶= |K(ℝΔ∙
)| = colim

𝑛∈Δop
K(ℝΔ𝑛 ) ∈ S𝑝

GWtop(ℝ; Ϙs𝜖) ∶= |GW(ℝΔ∙
; Ϙs𝜖)| = colim

𝑛∈Δop
GW(ℝΔ𝑛 ; Ϙs𝜖) ∈ S𝑝

and
Ltop(ℝ; Ϙs𝜖) ∶= |L(ℝΔ∙

; Ϙs𝜖)| = colim
𝑛∈Δop

L(ℝΔ𝑛 ; Ϙs𝜖) ∈ S𝑝.

The construction above furnishes a natural map of spectra Ktop(ℝ) → ko = ℤ × BGLtop
∞ (ℝ) which is an

equivalence by [Sch17Sch17, Proposition 10.2]. Similarly, by the same proposition GWtop
0 (ℝ; Ϙs𝜖) ≅ GW0(ℝ; Ϙs𝜖)

and 𝜏≥1 GWtop(ℝ; Ϙs𝜖) is naturally equivalent to BOtop
∞,∞(ℝ) when 𝜖 = 1 and to BSptop∞ (ℝ) when 𝜖 = −1.

The superscript top indicates that we topologise the groups as sequential colimits of Lie groups. In addition,
by [Sch17Sch17, Remark 10.4] the natural map L(ℝ; Ϙs𝜖) → Ltop(ℝ; Ϙs𝜖) is an equivalence.

We now claim that the map K(ℤ) → Ktop(ℝ) ≃ ko induces isomorphisms on 𝜋𝑖 for 𝑖 ≤ 2. The groups
in question are in fact isomorphic, furthermore the composite 𝕊 → K(ℤ) → ko is an isomorphism in the
claimed range, so the result follows.

Let us write Ktop(ℝ; Ϙs−) for the spectrum Ktop(ℝ) considered together with the 𝐶2-action induced by the
duality associated to Ϙs−. Since taking homotopy orbits preserves connectivity we get from the above that
the map 𝜋𝑖 K(ℤ; Ϙs−)hC2

→ 𝜋𝑖 Ktop(ℝ; Ϙs−)hC2
is an isomorphism for 𝑖 ≤ 2. To finish the proof it will hence

suffice to show that 𝜋2 Ktop(ℝ; Ϙs−)hC2
vanishes. Since geometric realisations preserve fibre sequences of

spectra, the latter group sits in an exact sequence

Ltop
3 (ℝ; Ϙs−) ⟶ 𝜋2 Ktop(ℝ; Ϙs−)hC2

⟶ GWtop
2 (ℝ; Ϙs−).
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Since ℝ is a field we have that Ltop
3 (ℝ; Ϙs−) ≅ L3(ℝ; Ϙs−) ≅ 0 and since GWtop

2 (ℝ; Ϙs−) ≅ 𝜋1Sp
top
∞ (ℝ) ≅ ℤ

it follows that the group 𝜋2 Ktop(ℝ; Ϙs−)hC2
is free. But from the homotopy orbit spectral sequence we see

that it has order at most 4, and so we conclude that it is trivial. □

3.2.12. Remark. By Karoubi periodicity (as formulated e.g. in Corollary [IIII].4.5.44.5.4), we know thatK(ℤ; Ϙ𝑠−) ≃
𝕊2−2𝜎 ⊗ K(ℤ; Ϙs) as spectrum with C2-action. Furthermore, the map K(ℤ) → ko is C2-equivariant with
respect to the C2-action induced by Ϙs on K(ℤ) and the trivial action on ko. The above lemma is then a
statement about low dimensional homotopy groups of (𝕊2−2𝜎 ⊗ ko)hC2

. These can also be computed using
the cofibre sequence C2+ → 𝑆0 → 𝑆𝜎 and some elaborations thereof.
3.2.13. Theorem. There are isomorphisms

i) GW−gq
0 (ℤ) ≅ ℤ⊕ ℤ∕2,

ii) GW−gq
1 (ℤ) ≅ ℤ∕4,

iii) GW−gq
2 (ℤ) ≅ ℤ

iv) GW−gq
3 (ℤ) ≅ ℤ∕24

v) GW−gq
𝑖 (ℤ) ≅ GW−gs

𝑖 (ℤ) for 𝑖 ≥ 4.
We remark that statements ii)ii) and iii)iii) have been shown previously by Krannich and Kupers using geo-

metric methods, see [KK20KK20].

Proof. Part v)v) follows immediately from Lemma 3.2.103.2.10 and Lemma 3.2.73.2.7iii)iii). Part i)i) is well known, see
the discussion at the beginning of the section. For Part iii)iii) it suffices to note that by Lemma 3.2.113.2.11 the map
GW−gq

2 (ℤ) → L−gq
2 (ℤ) ≅ Lgq

0 (ℤ) ≅ ℤ is injective with finite cokernel.
Now to show ii)ii) consider the following commutative diagram with exact rows:

L−gq
2 (ℤ) 𝜋1 K(ℤ; Ϙgq− )hC2

GW−gq
1 (ℤ) L−gq

1 (ℤ)

L−gs
2 (ℤ) 𝜋1 K(ℤ; Ϙgs− )hC2

GW−gs
1 (ℤ) L−gs

1 (ℤ)

≅

Since GW−gs
1 (ℤ) = 0 by Table (3.2.63.2.6) the bottom left hand map must be surjective. As in the proof of

Lemma 3.2.103.2.10, the map L−gq
2 (ℤ) → L−gs

2 (ℤ) identifies with the map Lgq
0 (ℤ) → Lgs

0 (ℤ) and hence with the
inclusion 8ℤ ↪ ℤ. Since 𝜋1 K(ℤ, Ϙgq− )hC2

≅ ℤ∕4 the upper left hand map must be 0. In addition L−gq
1 (ℤ) ≅

L−q
1 (ℤ) ≅ 0 and so the upper middle map gives an isomorphism GW−gq

1 (ℤ) ≅ ℤ∕4 by Lemma 3.2.113.2.11i)i).
Finally, to prove iv)iv) consider the commutative diagram

L−gq
4 (ℤ) 𝜋3 K(ℤ; Ϙgq− )hC2

GW−gq
3 (ℤ) L−gq

3 (ℤ)

L−gs
4 (ℤ) 𝜋3 K(ℤ; Ϙgs− )hC2

GW−gs
3 (ℤ) L−gs

3 (ℤ)

≅

where the bottom right map is surjective by Lemma 3.2.113.2.11ii)ii). Then L−gq
3 (ℤ) ≅ Lgq

1 (ℤ) = 0 and L−gq
4 (ℤ) ≅

L−gs
4 (ℤ) ≅ Lgs

2 (ℤ) ≅ 0, which implies that the top middle horizontal map in the above diagram is an
isomorphism and the bottom middle horizontal map is injective with cokernel L−gs

3 (ℤ) ≅ L−s
3 (ℤ) ≅ ℤ∕2;

see Proposition 2.3.12.3.1. Since GW−gs
3 (ℤ) ≅ ℤ∕48 by Table (3.2.63.2.6) this implies that GW−gq

3 (ℤ) ≅ ℤ∕24, as
claimed. □

3.2.14. Remark. By Proposition 3.1.113.1.11 and Corollary 1.3.151.3.15, we know that for the ring of integers O in a
number field 𝐹 , the canonical map

GWs
cl(O; 𝜖) ⟶ GWs

cl(O[
1
2 ]; 𝜖)

is a 2-local equivalence in degrees ≥ 1. In principle, one can then use the results of [KRØ20KRØ20] to calculate
the 2-local Grothendieck-Witt groups of O. As before, the 𝑝-local homotopy for odd 𝑝 is controlled by the
isomorphisms

GWs
cl,𝑛(O; 𝜖)[

1
2 ] ≅ K𝑛(O; 𝜖)[

1
2 ]C2

⊕ Ls
𝑛(O; 𝜖)[

1
2 ].
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One can then use Lemma 3.2.43.2.4 which determines the C2-action on the 2-inverted K-groups of O. Moreover,
by Corollary 2.3.22.3.2, the 2-inverted L-groups are only non-zero for 𝑛 = 4𝑘 and in this case are a free ℤ[ 12 ]-
module of rank equal to the number of real embeddings of the number field 𝐹 , see [MH73MH73, Chapter IV.4].
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