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1. INTRODUCTION

In the present work we pursue the ‘algebraization approach’ for oriented coho-
mology theories started in [CPZ] and continued in [HMSZ], [CZZ] and [CZZ2]; the
general idea is to match (equivariant) oriented cohomology rings of flag varieties
and elements of classical interest in them — such as classes of Bott-Samelson resolu-
tions, Schubert varieties and their duals — with explicit combinatorial objects that
can be introduced purely algebraically, in the spirit of Demazure [Dem 73], Kostant-
Kumar [[KK86, KIK90], Arabia [Ar86, Ar89], Bressler-Evens [BE90], Brion [Br97]
and others. We mainly focus on algebraic constructions pertaining to T-equivariant
oriented cohomology rings and associated duality pairings, where T' is a maximal
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torus in a split semisimple linear algebraic group G. Proofs and details of how these
constructions match cohomology groups and geometry can be found in | ]!

We now give a more precise overview of the approach.

In a series of papers | , ], Kostant and Kumar introduced and suc-
cessfully applied the techniques of nil (resp. 0-) Hecke algebras to study equivariant
singular cohomology (resp. K-theory) of flag varieties. In particular, they showed
that the dual of the nil Hecke algebra serves as an algebraic model for T-equivariant
singular cohomology of the variety of Borel subgroups G/B. The algebraic part of
this formalism was generalized in [ ] and | ]: given a formal group law F
and a root datum (i.e. a root system sitting in a lattice), one constructs a formal
affine Demazure algebra D, with a coproduct. Its presentation in terms of gener-
ators and relations resembles the one of an affine Hecke algebra. Indeed, when F' is
the additive (resp. multiplicative) formal group law, it coincides with the comple-
tion of the nil (resp. 0-) affine Hecke algebra (see | ]). Moreover, in section 9,
we show that for some degenerate elliptic formal group law F' and a root system
of type A the non-affine part of D is isomorphic to the classical Iwahori-Hecke
algebra (this result was recently generalized to arbitrary Kac-Moody root systems
in [ D).

The link with geometry goes as follows. We start with an equivariant version
of an algebraic oriented cohomology theory h in the sense of Levine-Morel | I;
algebraic cobordism 2 is a universal example of such a theory. Given a root datum
associated to (G,T') and a formal group law F' associated to h, one can prove (see
[ , Thm. 8.2]) that the dual D% of the coalgebra Dy is isomorphic to the T-
equivariant oriented cohomology ring hr(G/B). Specializing to the additive (resp.
the multiplicative) formal group laws, one then recovers the results of Kostant-
Kumar for singular cohomology (resp. for K-theory).

When dealing with an arbitrary formal group law (thus an arbitrary h), one
needs to take into account the following observation. Demazure [ , ]
proved that for Chow groups and K-theory, the class of a Bott-Samelson desingu-
larization corresponding to a reduced decomposition of an element w of the Weyl
group actually only depends on w and not on the chosen reduced decomposition. It
actually is the class of the — possibly singular — Schubert variety corresponding to
w in Chow groups or of its structural sheaf in K-theory. This independence plays a
crucial role in the arguments used in the literature when dealing with Chow groups
or K-theory: see Th. 1, Prop. 3, Cor. 1, 2, 3, and 4 in | |, Prop. 4.2 and 4.3
in [ L1 ], etc. However, Bressler and Evens | , Th. 3.7] proved that
if the formal group law of h is anything more complicated than multiplicative, this
independence result fails. And indeed, for an arbitrary oriented cohomology theory,
for example for (2, different Bott-Samelson desingularizations of the same Schubert
variety give different classes. This means that one needs to come up with genuinely
new arguments to understand the combinatorics of the general case, beyond Chow
groups and K-theory.

The following key tools are extensively used in the study of equivariant coho-
mology and K-theory:

Un that reference, the algebro-geometric setting is used, but the same algebraic formalism
also describes complex oriented cohomology theories applied to projective homogeneous varieties
under complex Lie groups.
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I. A moment map (to T-fixed points),
II. Push-forward operators to parabolic quotients G /P, or push-pull operators
when subsequently pulling back to G/B,
III. The Poincaré duality pairing and the basis dual to Bott-Samelson classes
for this pairing.
In the present paper we generalize all of them (i.e. give algebraic descriptions using
the algebra D and associated constructions) for an arbitrary oriented equivariant
cohomology theory h over a base field. In turn, these algebraic descriptions imply
geometric results (mostly stated in | D.

For convenience, let us nevertheless give a walk-through of the geometric inter-
pretation of our algebraic results. Our notation for the spectrum of the base field
is pt and we’ll use R = h(pt) and S = hy(pt) as coefficient rings.”

I. The T-fixed points of G/B are naturally in bijection with the Weyl group W
[ , §6]. This gives a pull-back to the fixed locus map (the so-called moment
map)
hy(G/B) — by (W) ~ P hr(pt).
weW

The algebraic version of the moment map is precisely the embedding of Defini-
tion 10.1

»— Sy~ P s

weW

hence, proving its injectivity; we don’t know any direct geometric proof of the
injectivity of the moment map in this generality.

II. Then, we look at push-pull operators of the form

nr(G/P=r) %5 0r(G/P=) & b (G/Psr)

given by the push-forward followed by the pull-back along the natural quotient map
p: G/P=z — G/Ps, where P=r C Pz are two parabolic subgroups of G. Again p*
happens to be injective, and it identifies hp(G/Pz) with a subring of hp(G/P=/),
namely the subring of invariants under the action of the corresponding parabolic
subgroup Wz of the Weyl group W (cf. | , Thm. 9.1]). This does not seem
to be straightforward from the geometry either, and it once more follows from our
algebraic description (see Lemma 15.1): for subsets =/ C = of a given set of simple
roots IT (giving rise to the parabolic subgroups P=/ and P=), the push-pull operator
is the bottom row of the diagram

A /E/
(D)W= =5 (D)= © (Df)"

PL/ TIZ péTIZ
Az )z

* * *
D} = D}z D} =

while the top is obtained as the action of an element Yz = (see 5.3), and the vertical
isomorphisms correspond to pull-backs to (their image in) hy(G/B). The formula
for the element Yz = with 2’ = () had already appeared in related contexts, namely,

2We will require that S be ‘complete’ in some precise sense, but this is a technical point, that
we prefer to hide here for simplicity. See , Definition 2.
fer to hide here for simplicity. S Definition 2.1
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in discussions around the Becker-Gottlieb transfer for topological complex-oriented
theories (see | , (2.1)] and | , 84.1]).

ITI. We also provide the algebraic counterpart of the Poincaré pairing (cf | ,
Thm. 9.3])
hT(G/PE) X hT(G/PE) — hT(pt)
obtained by multiplication and push-forward to the point. It is a pairing
Dirz®Drz — S

We show in Theorem 15.6 that it is non-degenerate, and that algebraic classes cor-
responding to chosen Bott-Samelson desingularizations of Schubert varieties (by
[ , Lem. 8.8]) form a basis {Az(Ape (11fe))}, o= Of Df=; we describe ex-
plicitly the dual basis with respect to this pairing, its elements being algebraic
duals {(Yli)*}wewi of certain natural elements {Yli}weWE in Dpz=. This gen-
eralizes (to parabolic subgroups and to arbitrary equivariant oriented cohomology
groups) and unifies several results in the literature: [ , Prop. 1 p. 69], | ,
Thm. 4.2.1], | , [ , §14]. We also construct another pair of dual

bases
{A=(Brzev (w1 fe)) } o= and {(X7)* ), cpp=-

In the case of Chow groups this pair is the same as the previous one up to sign,
but for K-theory they are already quite different (see [.7Z, §5]).

A final technical remark: as in [ ], it is convenient to invert certain ele-
ments in S because most formulas have a nicer expression using denominators. But
contrary to | ], in which S is formal power series over R = Z and the local-
ization used is simply the fraction field of S, in our case R can be arbitrary, and
we must be very careful about localizing as little as possible. Thus, we localize S
at a multiplicative subset generated by Chern classes of line bundles corresponding
canonically to roots, which gives injections S C @ (the localization), Sy C Qw
and Sy, € Q. Although we do not know good geometric interpretations of @,
Qw or Qjy, all the formulas and operators we are interested in are easily defined
at that localized level. The main technical difficulties then lie in proving that these
operators actually restrict to .S, Sy, D} etc., or so to speak, that the denominators
cancel out.

The paper is organized as follows. In sections 2 and 3, we recall definitions and
basic properties from | , 82, 83, [ , §6] and | , 84, §5]: the formal group
algebra S, the Demazure and push-pull operators A, and C,, for every root «, the
formal twisted group algebra Qw and its Demazure and push-pull elements X,
and Y,. In section 4, we introduce a left Qw-action ‘e’ on the dual Q. It induces
both an action of the Weyl group W on Q3 (the Weyl-action) and an action of
X, and Y, on Q) (the Hecke-action). In sections 5 and 6, we introduce and study
more general push-pull elements in Qw and operators on Q7 with respect to given
coset representatives of parabolic quotients of the Weyl group. In section 7 we
study relationships between some technical coefficients. In section 8, we construct

a basis of the subring of invariants of Q7;,, which generalizes [ , Lemma 2.27].
In section 9, we recall the definition and basic properties of the formal (affine)
Demazure algebra Dg following | , §6], [ , §5] and | ]. We show that

for a certain elliptic formal group law (Example 2.2), the formal Demazure algebra
can be identified with the classical Iwahori-Hecke algebra. In section 10, we define
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the algebraic restriction to the fixed locus map which is used in section 12 to restrict
all our push-pull operators and elements to Dy and its dual D7} as well as to restrict
the non-degenerate pairing on D7%. In section 11, we define the algebraic restriction
to the fixed locus map on G/ P for a parabolic subgroup P. In section 13, we define
an involution on D7, which is used to relate the equivariant characteristic map with
the push-pull operators. In section 14, we define and discuss the non-degenerate
pairing on the subring of invariants of D7 under a parabolic subgroup of the Weyl
group. At last, in section 15, in the parabolic case, we identify the Weyl group
invariant subring (D%)"= with D}, =, the dual of a quotient of D, which matches
more naturally to hp(G/P).

Acknowledgments: One of the ingredients of this paper, the push-pull formulas in
the context of Weyl group actions, arose in discussions between the first author and
Victor Petrov, whose unapparent contribution we therefore gratefully acknowledge.

2. FORMAL PUSH-PULL AND DEMAZURE OPERATORS

In this section we recall definitions of the formal group algebra and of the formal
Demazure and push-pull operators, following | , §2, §3] and | ].

Let R be a commutative ring with unit, and let ' be a one-dimensional commu-
tative formal group law (FGL) over R, i.e. F(x,y) € R[x,y] satisfies

F(x,0) =0, F(z,y) = F(y,z) and F(x, F(y,z2)) = F(F(z,y), 2).
Example 2.1. The additive FGL is defined by F,(x,y) = z+y, and a multiplicative
FGL is defined by Fp,(z,y) = x +y — Bzy with 8 € R (not necessarily a unit).
The coefficient ring of the universal FGL Fy(2,y) = x +y + >, j5; a; jx'y’ is
generated by the coefficients a;; modulo relations induced by the commutativity
and associativity of the formal group law and is called the Lazard ring.

Example 2.2. Consider an elliptic curve given in Tate coordinates by
(1 — puyt — pot?)s = 3.

The corresponding FGL over the coefficient ring R = Z[u1, 2] is given by [ ,
Cor. 2.8]
F(x,y) = oy,

14+pozy
Its genus is the 2-parameter generalized Todd genus introduced and studied by
Hirzebruch in | ]. Tts exponent is given by the rational function ﬁ in

e”, where 1 = €1 + €3 and us = —eje5 which suggests to call F' a hyperbolic FGL
and to denote it by F},.
By definition we have
Fyp(z,y) =2 +y —2y(p + paFr(z,y))
and, thus, that the formal inverse of Fj, is identical to the one of F,, (i.e. —2—)

prir—1
_ 2z—pia?
and Fj(z,2) = 005

Let A be an Abelian group and let R[zs] be the ring of formal power series
with variables ) for all A € A. Define the formal group algebra S := R[A]r
to be the quotient of R[xza] by the closure of the ideal generated by elements x
and zx, 1, — F(zx,,Ty,) for any A, Ao € A | , Def.2.4]. Here 0 is the identity
element in A. Let Zr denote the kernel of the augmentation map e€: S — R, x, — 0.
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Let A be a free Abelian group of finite rank and let 3 be a finite subset of A. A
root datum is an embedding ¥ < AV, o — " into the dual of A satisfying certain
conditions | , Exp. XXI, Def. 1.1.1]. The rank of the root datum is the Q-rank
of A®y Q. The root lattice A, is the subgroup of A generated by X, and the weight
lattice A, is the Abelian group defined by

Ay ={weA®,Q|a"(w) €Zfor all a € T}.

We always assume that the root datum is reduced and semisimple (the Q-ranks of
A, Ay and A are the same and no root is twice another one). We say that a root
datum is simply connected (resp. adjoint) if A = A,, (resp. A = A,), and then use
the notation D¢ (resp. D) for irreducible root data where D = A, B,C, D, E, F,G
is one of the Dynkin types and n is the rank.

The Weyl group W of a root datum (A, X) is the subgroup of Autz(A) generated
by simple reflections s, for all o € ¥ defined by

s5a(A) = A —a’(Na, Me€A.

We fix a set of simple roots Il = {a,...,a,} C X, i.e. a basis of the root datum:
each element of ¥ is an integral linear combination of simple roots with either all
positive or all negative coefficients. This partitions ¥ into the subsets ¥+ and ¥~
of positive and negative roots. Let ¢ denote the length function on W with respect
to the set of simple roots II. Let wg be the longest element of W with respect to ¢
and let N := £(wyp).

Following | , Def. 4.4] we say that the formal group algebra S is X-regular if
T4 1S not a zero divisor in S for all roots a € ¥. We will always assume that:
The formal group algebra S is Xi-reqular.

By | , Lemma 2.2] this holds if  +p x is not a zero divisor in R[z], in particular
if 2 is not a zero divisor in R, or if the root datum does not contain any symplectic
datum C*¢ as an irreducible component.

Following | , Definitions 3.5 and 3.12] for each o € ¥ we define two R-linear
operators A, and C, on S as follows:

(21) Aa(y) = mu Ca(y) = Kay_Aa(y) = %"’—L(y)a yeSs,

Lo —a Lo

where Kk, 1= mi + f (note that k, € S). The operator A, is called the Demazure
operator and the operator C\, is called the push-pull operator or the BGG operator.

Example 2.3. For the hyperbolic formal group law F} we have x, = p; +
o Fp(z—q, o) = p1 for each a € ¥. If the root datum is of type A$¢, we have
Y = {+a}, A = (w) with simple root @ = 2w and

1+,u2:£i
1—przy ”

Ca(ma):mia‘kh:/ﬂxa_l“‘% Ca(xw):%+%zﬂlxw_

T_q T pHize—12 T

If it is of type A5° we have ¥ = {f+aq, *ag, (a1 + a2)}, A = (w1, ws) with simple
2x17,ulszzgfy,2mlm2
1+pzai—prze—2pu2z122

roots a1 = 2wy — wy, g = 2wy —wy and x,, =

1+pezi —p1z2—2p0T1 T2
1—p1z1—p2xi22 ’

Ca2($1) = M1, Cal(fl) = MH1T1 —

where x1 1= x,, and 3 1= x,,.
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According to [ , 83] the operators A, satisfy the twisted Leibniz rule
(2.2) Ay(zy) = Ap(@)y + sa(2)An(y), x,y €S,

i.e. A, is a twisted derivation. Moreover, they are SWe-linear, where W, = {e, 54},
and

(2.3) Sq(x) =z if and only if A, (z) =0.

Remark 2.4. Properties (2.2) and (2.3) suggest that the Demazure operators
can be effectively studied using the theory of twisted derivations and the invariant
theory of W. On the other hand, push-pull operators do not satisfy properties (2.2)
and (2.3) but according to [ , Theorem 12.4] they correspond to the push-pull
maps between flag varieties and, hence, are of geometric origin.

For the i-th simple root ay, let A; == A,, and s; := S,,. Given a non-empty
sequence I = (iq,...,4m,) with i; € {1,...,n} define

Ar:=A;, 0---0A; and C;:=C;,0---0C;, .

We say that a sequence I is reduced in W if s;,s;, ...s;,, is a reduced expression
of the element w = s;,5i,...5;, in W, i.e. it is of minimal length among such
decompositions of w. In this case we also say that I is a reduced sequence for w of
length £(w). For the neutral element e of W, we set I, = ) and Ay = Cy = idg.

Remark 2.5. It is well-known that for a nontrivial root datum the composites
Ar, and C7,, are independent of the choice of a reduced sequence I, of w € W
if and only if F is of the form F(z,y) = z + y + Bxy, 8 € R. The “if” part of
the statement is due to Demazure | , Th. 1] and the “only if” part is due to
Bressler-Evens [ , Theorem 3.7]. So for such F' we can define A, := Ay, and
Cy :=Cp,, for each w e W.

The operators A,, and C,, play a crucial role in the Schubert calculus and com-
putations of the singular cohomology (F = F;) and the K-theory (F = F,) rings
of flag varieties.

For a general F (e.g. for F' = F},) the situation becomes much more intricate as
we have to rely on choices of reduced decomposition I,,.

Let us now prove a Euclid type lemma for later use.

Lemma 2.6. If f € xR[z] is regular in R[z] and g € yR[y], then f(z)+r g(y) is
reqular in R]z,y].

Proof. Consider f+pgin Rx,y] = (R]z])[y] and note that its degree 0 coeflicient
(in R[z]) is f and is regular by assumption, so f 4+ g is regular by | , Lemma
12.3.(a)]. O

Lemma 2.7. For each irreducible component of the root datum, assume that the
corresponding integers or formal integers listed in Table 1 are regular in R or R[z]
(and that 2 is invertible for C;¢). In particular, S is X-reqular. Then xq|zsx’
implies that x|z’ for any two positive roots o # B and for any ' € S.

(For example, in adjoint type E7 we require that either 2-p 2 or 3-p x is regular in
R[z], and in simply connected type E7, we require that 2 is regular in R.)
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Type Al Bl Cl Dl Gz F4 Ea E7 Eg
(22| 023|122 | 124
.. 2-p 2'F 2:F
adjoint 0 2F 2F 0 and 3-r 2r | 0 or 3-p | or 3-p
non adjoint || |A/Ar| 2 2 € R* 2 - - 3 2 -

TABLE 1. Integers and formal integers assumed to be regular in
R or R[z] in Lemma 2.7. In the simply connected Cs case, we
require 2 invertible in R.

Proof of Lemma 2.7. It is equivalent to show that x3 is regular in S/(z,).
If  and S belong to different irreducible components, we can complete o and (8

into bases of the lattices of their respective components by [ , Lemma 2.1], and
then complete the union of the two sets into a basis of A. By | , Cor. 2.13],
this gives an isomorphism S ~ R[z1, - ,2;] sending z, to z1 and zg to xa, so the

conclusion is obvious in this case.

If « and S belong to the same irreducible component, we can assume that the
root datum is irreducible.
Adjoint case. Complete a to a basis (a;)1<<; of simple roots of ¥ and express § =
> mioy. Still by | , Cor. 2.13], this yields an isomorphism S ~ R[x1, ..., 2],
sending x, to 1 and zg to (ny -p 1) +p -+ +r (N -F 7). A repeated application
of Lemma 2.6 shows that xzg is regular provided n; - x is regular in R[x] for at
least one ¢ # 1. Using Planche I to IX in | ] giving coefficients of positive roots
decomposed in terms of simple ones, one checks for every type that it is always
the case under the assumptions. For example, in the Fjg case, there are always two
1’s in any decomposition (except if the root is simple), hence the absence of any
requirement. In the E; case, the same is true except for the longest root, in which
there is a 1, a 2 and a 3, hence the requirement that 2 -p x or 3 - x is regular in
R[z]. All other cases are as easy and left to the reader.

Non adjoint case. By | , Lemma 1.2], the natural morphism R[A,]r — R[A]r
induced by the inclusion of the root lattice A, C A is injective. Furthermore, it
becomes an isomorphism if ¢ = |[A/A,| is invertible in R.

Since a can be completed to a basis of A or to a basis of A, both R[A,]r/xa
and R[A]r/x. are isomorphic to power series ring (in one less variable) and there-
fore respectively inject in R[é][[AT]} r/Tq and R[é][[Ar]] F/%q, which are isomor-
phic. By the adjoint case, xg is regular in the latter, and thus in its subring

S/xo = R[A]F/zq. O

Remark 2.8. Since n-p « is regular in R[z] if n is regular in R, the conclusion of
Lemma 2.7 holds when formal integers are replaced by usual integers in R in the
adjoint case.

Moreover, if the formal group law is the multiplicative one = + y — xy, then
2 -p x is regular in R[z] for any noetherian ring R (to show this consider the ideal
generated by the coefficients of a power series annihilating 2 - x). In particular,
Lemma 2.7 still holds for all adjoint types in the case R = Z|a, b]/(2a, 3b) (in which
neither 2 nor 3 are regular).
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3. TWO BASES OF THE FORMAL TWISTED GROUP ALGEBRA

We now recall definitions and basic properties of the formal twisted group algebra
Qw, Demazure elements X, and push-pull elements Y, following | ] and
[C7Z7]. For a chosen set of reduced sequences {I }wew we introduce two Q-bases
{X1, Ywew and {Y7, }wew of Qw and describe transformation matrices (a;,,) and

(a}iw) with respect to the canonical basis {dy }wew of Qw.

Let Sw be the twisted group algebra of S and the group ring R[W], i.e. Sy =
S ®@gr R[W] as an R-module and the multiplication is defined by
(3.1) (z ®6y) (2 @6y ) = 2w(2") @ S, 2" €5, w,w €W,

where §,, is the canonical element corresponding to w in R[W]. The algebra Sy, is
a free S-module with basis {1 ® &, }wew. Note that Sy is not an S-algebra since
the embedding S — Sy, * — = ® J. is not central.

Since the formal group algebra S is Y-regular, it embeds into the localization
Q= S[i | @ € 3. Let Qw be the @-module obtained by localizing the S-module
Sw, i.e. Qw = Q ®s Sw. The product on Sy extends to Qw using the same
formula (3.1) on basis elements (z and =’ are now in Q).

Inside Qw, we use the notation ¢ := ¢®0d. and d,, := 1®0dy, 1 := J. and d, 1= Js,,
for a root a € 3. Thus ¢d,, = ¢® dyy and 6, = w(q) @ §y,. By definition, {dy bwew
is a basis of Qw as a left @-module, and Sy injects into Qw via dy, > -

Similarly to (2.1) for each a € ¥ we define the following elements of Qy (corre-
sponding to the operators A, and C,, respectively, by the action of (4.3)):

Xy =L - L4, Ya::/@a—Xa:L—F%(Sa

called the Demazure elements and the push-pull elements, respectively.
Direct computations show that for each o € ¥ we have
(3.2) X2 = koXo = Xoka and Y2 = k.Y, = Yoka,
Xaq = sa(@)Xa +Dalg) and Yaq=sa(q)Ya+A-a(q), ¢€Q,
X Yo=Y, X, =0.
We set §; = ds,, X; := X,, and Y; :=Y,, for the i-th simple root «;. Given

a sequence I = (i1,42,...,%y) with i; € {1,...,n}, the product X;, X;, ... X;, 1is
denoted by X and the product Y;,Y;, ...Y; by Y;. Weset Xy =Yp = 1.

By | , Ch. VI, §1, No 6, Cor. 2] if v € W has a reduced decomposition
V= 8;,Si, -S4, , then
(3.3) v NS = {au,, 80, (Qiy)y ooy SiySip e S0y, (i)}
We define
Ty 1= H Zq.
acvE— Nt

In particular, ., = [[,cx+ Ta if wo is the longest element of .

Lemma 3.1. We have
(a) suX~ NET ={a} and x5, = x4;
(b) if bL(vs;) = €(v) + 1, then

v5; 5" NEY = (WS NI U{v(a)} and 2y, = Toy(ar);
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(c) if L(s;v) = £(v) + 1, then
508 NI =508 NEN) U {as} and x4, = 5i(70)T0,;
(d) if w=uv and l(w) = £(u) + £(v), then
wy NET = @WE NI UuET NET) and 1y, = zu(Ty);
(e) for anyv e W, ﬂ%z(’) is inwvertible in S.
Proof. Ttems (a)-(d) follow immediately from the definition. As for (e) we have
vt = (ETNET)UETNET) = (—(ST NEY)) U @St NEY) and
YT =03NYt = (" NI U (St uXt), therefore,

V(@wg) _ Macost Ta _ H T a
Two [aes+ ®a Ta
acvZ— NI+
which is invertible in S since so is Zw’“ . O
o

Lemma 3.2. Let I, be a reduced sequence for an element v € W.
Then X1, = Y, <y Gowlw for some ay, € Q, where the sum is taken over

all elements of W less or equal to v with respect to the Bruhat order and avX,v =
(—1)5(”)%. Moreover, we have 6, = 3, -, bUXMX]w for some bff’w € S such that
by. =1 and by, = (—1)! g,

Proof. Tt follows from | , Lemma 5.4, Corollary 5.6] and the fact that d§, =
1—2.,X,. [l

Similarly, for Y’s we have

Lemma 3.3. Let I, be a reduced sequence for an element v € W.

Then Y1, =3 <, ay 0w for some al , € Q and al, = i Moreover, we have

Oy = i<y by Y1, for someb) ., €S and b), = x,.

w<v Yv,w v, W
Proof. We follow the proof of | , Lemma 5.4] replacing X by Y. By induction
we have

Y}u = (ﬁ + ﬁéﬂ) Z a’vY’,w(Sw = ﬁsﬂ(az/’,v')av + Z a?)/,w(sw’

w<v’ w<v
where I, = (i1,...,%y) is a reduced sequence of v, 8 = a;, and v = sgv. This
implies the formulas for Y7, and for avyﬂj. The remaining statements involving bf)w
follow by the same arguments as in the proof of | , Corollary 5.6] using the fact
that 6, = 24Ys — ;7= and =~ € S§*. O
As in the proof of | , Corollary 5.6], Lemmas 3.2 and 3.3 immediately imply:

Corollary 3.4. The family { X1, Yvew (resp. {Yr, }vew ) is a basis of Qw as a left
or as a right Q-module.

Example 3.5. For the root data A%¢ or Aj¢ and the formal group law Fj, we have

T = T_, and
1 0
Y _
(A w)vwew = <,u1 B i Ii) ,

where the first row and column correspond to e € W and the second to s, € W.

Multiplying the base-change matrices of Lemma 3.2 and 3.3 we obtain
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Corollary 3.6. For each v e W we have
YI’U = (_1)€(U)XIU + Z Cv,wXva Cy,w S Q

w<v
4. THE WEYL AND THE HECKE ACTIONS

In the present section we recall several basic facts concerning the @-linear dual
Q3 following | ] and [C'Z7]. We introduce a left Qu-action ‘e’ on @y, which
induces an action of the Weyl group W on Q3 (the Weyl-action) and the action
by means of X, and Y, on Q}, (the Hecke-action). These two actions will play an
important role in the sequel.

Let Q}y = Homg(Qw, Q) denote the Q-linear dual of the left Q-module Qw .
By definition, Q3 is a left Q-module via (¢f)(2) := ¢f(z) for any z € Qw, f € Q3
and ¢ € Q. Moreover, there is a Q-basis {fy}wew of QF dual to the canonical
basis {0 }wew defined by fu,(d,) := 5", (the Kronecker symbol) for w,v € W.

Definition 4.1. We define a left action of Qw on Q7 as follows:
(ze )(2) = f('2), 2,72 €Qw, feQ.

By definition, this action is left Q-linear, i.e. z e (¢f) = q(z o f) and it induces a
different left -module structure on @y via the embedding g — g¢de, i.e.

(g o f)(2) := f(2q).

It also induces a @-linear action of W on Qj, via w(f) :=d, e f.

Lemma 4.2. We have q ® f, = w(q)fuw and w(fy,) = fow—1 for any ¢ € Q and
w,v € W.

Proof. We have (q e f,)(0,) = fu(v(q)d,) = v(¢q)6X", which shows that q e f, =

s

v
v(q) fo. For the second equality, we have [w(f,)](04) = fo(0u0w) = 6K, sow(f,) =

v,uw?

fvw_l' 0

There is a coproduct on the twisted group algebra Sy that extends to Qw
defined by | , Def. 8.9]:

ACQVV_>62W ®Q QW; q(stqéw@(sw-

Here ®q is the tensor product of left )-modules. The coproduct is cocommutative
with co-unit € : Qw — Q, @0y — q | , Prop. 8.10]. The coproduct structure on
Qw induces a product structure on @3, which is @-bilinear for the natural action
of Q on QF, (not the one using o). In terms of the basis { fy, }wew this product is
given by component-wise multiplication:

(4.1) (Z o fo)( Z G fw) = Z G fws  Guws @y € Q.
veEW weWw weWw

In other words, if we identify the dual @7, with the @-module of maps Hom(W, Q)
via

QT/V — HOH’I(W,Q), f — flv f/(U}) = f((sw)a

then the product is the classical multiplication of ring-valued functions.

The multiplicative identity 1 of this product corresponds to the counit ¢ and
equals 1 =)y fu. We also have

(4.2) ge (ff)=(qae f)f' = flae ) forqeQandf f' €Qj.
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Lemma 4.3. For any a € ¥ and f, f' € Q% we have so(ff') = sa(f)sa(f'), i.e.
the Weyl group W acts on the algebra Q3 by Q-linear automorphisms.

Proof. By Q-linearity of the action of W and of the product, it suffices to check the
formula on basis elements f = f,, and f’ = f,, for which it is straightforward. O

Observe that the ring @ can be viewed as a left Qy-module via the following
action:

(4.3) (46w) - ¢ = qu(¢), ¢.¢ €Q weW

Then by definition we have

(4.4) (qoel)(2)=2-¢q, z€Qw.

Definition 4.4. For o € ¥ we define two @)-linear operators on Q7 by
Ao(f) =Y, f and B.(f)=Xaef, [fe€Qiy.

An action by means of A, or B, will be called a Hecke-action on Q7.

Remark 4.5. If F = F,,, (resp. F' = F,) one obtains actions introduced by
Kostant-Kumar in | , I1g] (resp. in [ , Is1]).

As in (2.2) and (2.3) we have

(45) Ba(ff/> = Ba(f)f/ + Sa(f)Ba(f/) and B, 084 = —B,, for f, f/ € Q;V:

(4.6) Bo(f) =0 if and only if f € (Qy)"
Indeed, using (4.2) and Lemma 4.3 we obtain

Bo(f)f' +5a(f)Ba(f) = [7-(1=0a) @ fIf' + 5a(H)l7-(1 = da) @ f]
= [i%f—sa(f))]f +5a(f)lzs @ (f = sa(f))]
= oo (ff =salf)salf) = Balff)

o B(50(1) = 1= 50)950(1) = & 30(1) = 1) = =B(1). hsfor (1) e
have 0 = B,(f) = X, o f = — o [(1 — §,) e f] which is equivalent to f = s,(f).

And as in (3.2), we obtain
(4‘7) AZQ(f) = Ka ® Aa(f) = Aa(’ia L f)7 BZQ(f) = Ka ® Boc(f) = Ba(/’ia . f)7

AyoBy,=B,oA, =

We set A; = A,, and B; := B,, for the i-th simple root ;. We set A; =
Aj 0...04; and By = B; 0...0B;_ for anon-empty sequence I = (i1,...,%,) with
ij €{l,...,n} and Ay = By = id. The operators A; and B; are key ingredients in
the proof that the natural pairing of Theorem 12.4 on the dual of the formal affine
Demazure algebra is non-degenerate.



PUSH-PULL OPERATORS 13

5. PUSH-PULL ELEMENTS AND OPERATORS

Let us now introduce and study a key notion of the present paper, the notion
of push-pull operators (resp. elements) on @ (resp. in Qw) with respect to given
coset representatives in parabolic quotients of the Weyl group.

Let (3,A) be a root datum with a chosen set of simple roots II. Let & C II
and let Wz denote the subgroup of the Weyl group W of the root datum generated
by simple reflections s,, o € E. We thus have Wy = {e} and Wy = W. Let
YSzi={a€X|s, €Wz} and let Z; =Xz NXT, B2 :=T=N X~ be subsets of
positive and negative roots respectively.

Given subsets Z' C = of II, let EJEF/E, =32\ 3L and Yoz =2z \ Xz We
define
TE/m o= H To and set zg 1= /.

acX_ ,_,

=/=

In particular, zp = [[ ey Ta = Wo(Tw,)-
Lemma 5.1. Given subsets Z' C = of II we have
U(EE/E,) =Xz and v(Eg/E,) = Eg/a, for any v € Wz,

Proof. We prove the first statement only, the second one can be proven similarly.
Since v acts faithfully on Xz, it suffices to show that for any o € ¥2 /= the root

B = v(a) € Y= and is negative. Indeed, if f € Y=/, then so is a = v=(B) (as
v~1 € Wz/), which is impossible. On the other hand, if 3 is positive, then

B=v(a) vz NXE =0vE, NEL,

where the latter equality follows from (3.3) and the fact that v € Wz, So a =
v=1(B) € L=/, a contradiction. O

Corollary 5.2. For any v € W=/, we have v(rz)=/) = v=/=/ -

Definition 5.3. Given a set of left coset representatives Wz = of Wz/W=/ we
define a push-pull operator on @Q with respect to Wz =/ by

CE/E’ (q) = Z w(ms(is’ )a q S Qa

wEWE/E’

and a push-pull element with respect to Wz,=/ by

YE/E’ = ( Z 6w)$/5'

UJEWE/E/

We set Cz := Cg/p and Yz := Yz/p (so they do not depend on the choice of
Wz=,9p = W= in these two special cases).

By definition, we have Cz/=/(q) = Yz/=/ - ¢, where Yz =/ acts on ¢ € Q by
(4.3). Also in the trivial case where Z = Z', we have xz/z = 1, while Cz/z = idg
and Y=,z = 1 if we choose e as representative of the only coset. Observe that for

2 = {o;} we have Wz = {e,s;} and Cz = C; (resp. Y= = YV;) is the push-pull
operator (resp. element) introduced before and preserves S.
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Example 5.4. For the formal group law Fj, and the root datum As, we have
TN =Ty Ty ®—ay—ap and

Cu(1)= > w(t)=pml ! +—1— 4+ L) = 4 + pape.

T—apT—ay—ay T—oayTag TagTag+toag
weWw

Lemma 5.5. The operator Cz /= restricted to Q"= is independent of the choices
of representatives Wz =/ and it maps QWE’ to QW=.
€ Q"= by Corollary 5.2. The second

part follows, since for any v € Wx=, and for any set of coset representatives Wz =/,
the set vWz/=/ is again a set of coset representatives.

Proof. The independence follows, since

Actually, we will see in Corollary 12.2 that the operator Cz sends S to S"=.

Remark 5.6. The formula for the operator Cz (with = = () had appeared before
in related contexts, namely, in discussions around the Becker-Gottlieb transfer for
topological complex-oriented theories (see [ , (2.1)] and | , 84.1]). The
definition of the element Y=,z can be viewed as a generalized algebraic analogue
of this formula.

Lemma 5.7 (Composition rule). Given subsets 2" C Z' C E of Il and given sets of

representatives Wz =z and Wz jzn, take Wz zn := {wv | w € Wz =/, v € Warjzn}
as the set of representatives of W= /Wen. Then
CE/E/ O CE//E// = CE/E” a,nd YE/E/YEI/E// = E/E/I.

Proof. We prove the formula for Y’s, the one for C’s follows since C' acts as Y, and
the composition of actions corresponds to multiplication. We have Yz =/ Y=/ /= =

(D dum) D bogm)= ) b

weWz =/ ”EWE’/E” WEWE/E’ s UEWE//E//

By Corollary 5.2, we have U‘l(:vE/E/) = zz/=. Therefore, v_l(xE/E/)xE//Eu =
vz = xz=r = vz zv. We conclude by definition of Wz, =z O

The following lemma follows from the definition of Cz/=:.

Lemma 5.8 (Projection formula). We have

Czjz(qq) = qC=zj=/(q")  for any g € Q"= and ' € Q.
Lemma 5.9. Given a subset = of Il and o € E we have
(a) Ye =YY, =Y, Y" for someY’ andY" € Qw,
(b) Y:Xa = X Y’: = O Y Y: = IiaY: and YEYa = Ycﬂa
Proof. (a) The first identity follows from Lemma 5.7 applied to & = {a} (in this
case Y/ = Yz =/).

For the second identity, let *Wz= be a set of right coset representatives of W, \Wz,
thus each w € W= can be written uniquely either as w = s, u or as w = u with
u € “Wz. Then

Yz = ) (140)0ut = > (1+da)-a adut
ue*Ws - ue*Wg - B
= Z Yox_o6 uz =Y, Z §, =)
ue*Wg ue*Wx=

(b) then follows from (a) and (3.2). O
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6. THE PUSH-PULL OPERATORS ON THE DUAL

We now introduce and study the push-pull operators on the dual of the twisted
formal group algebra Q7.

For w € W, we define f= := Y vewws Ju- Observe that fZ = f% if and only
if wW= = w'Wz. Consider the subring of invariants (Qj;)"= by means of the ‘e’

action of Wz on @y, and fix a set of representatives Wy = of W/Wz. By Lemma
4.2, we then have the following

Lemma 6.1. The family { {3 }wewy,= forms a basis of (Q3y)"V= as a left Q-module,
and fEfZ = 5Krf for any w,v € Wry/=.
In other words, {fZ}uecwy, /= 1s a set of pairwise orthogonal projectors, and the

direct sum of their images is (Qj)"=.

Definition 6.2. Given subsets & C = of IT and a set of representatives Wz =/ we
define a Q-linear operator on Qy;, by

Azjz(f) =Yz o f, [ €Qyy,
and call it the push-pull operator with respect to Wz/=/. It is Q-linear as so is the
‘o’-action. We set A= = Az/p.

Lemma 5.7 immediately implies:

[I]

Lemma 6.3 (Composition rule). Given subsets = C Z' C E of Il and sets of
representatives Wz = and Wz /=, let Wzjzn = {wv | w € Wzjz, v € We =}
Th@n we ha/Ue A:/:/ o A://:// = A:/:// .

Lemma 6.4 (Projection formula). We have
Azjz (ff) = fAz/= (f))  for any f € (Q3y)"= and [' € Qjy.
Proof. Using (4.2) and Lemma 4.3, we compute

Az (1) = Yoz o (Ff) = (D0 duizg) e (ff)= D dueits e (ff)
’wEW—/~/ wEWE/E/ -
= D dwe(flaiz o) = Y Guelueiisef)
weWz =/ weWg =/
=f D bueloef =fAz=(f) O
w€W~/~/

Here is an analogue of Lemma 5.5
Lemma 6.5. The operator Az =/ restricted to (QT/V)WE’ is independent of the

choices of representatives Wz = and it maps (Qiy)"V=" to (Qjy)"=.
Proof. Let f € (Q%,)"='. For any w € W and v € We, by Corollary 5.2, we have
(6w”15/51).f (6“’15/5151’).f (5“’1 =/ ) 6 .f (wxE/E/).f'

which proves that the action on f of any factor 5w($/:,) in Y=z/=/ is independent

of the choice of the coset representative w.
Now if v € W=, we have

v(Az/=(f)) =0y 0 Yz o f = (6,Yz/z/) @ [ = Az/=/(f),
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where the last equality holds since 6, Yz /= is again an operator Yz =/ corresponding
to the set of coset representatives vWz =/ (instead of Wz,=/). This proves the second
claim. (Il

Lemma 6.6. We have Az/= (f,) = m

Az=(fF) = mﬂ?a Az(f5) = smmgl and An(v(en)fo) = 1.

Proof. By Lemma 4.2 we get

:( Zdu;é/y).fv: Zéw v(w—/”’)fv ~ ( 315 Z Fow=1-

wEWE/E/ weWE/E’ ’LUEW~/~/

ZMGW:/:, fow-1- In particular,

In particular

AE/E’(fUE,): Z WE/E,) Z fku*l :m Z Z fku*l

weWzr ueWE/E’ weEWzr uEWE/E/

where the second equality follows from Corollary 5.2. O
Together with Lemma 6.1 we therefore obtain:

Corollary 6.7. We have Az /= ((Q%)"V=') = (Q3)"V=.

Definition 6.8. We define the characteristic map c: Q — Q3 by ¢ — qe 1.

By the definition of the ‘e’ action, ¢ is an R-algebra homomorphism given by
c(q) = Y pew w(@) fuw, that is, c(q) € Qjy is the evaluation at ¢ € Qw via the
action (4.3) of Qw on Q. Note that ¢ is Qw-equivariant with respect to this action
and the ‘o’-action. Indeed, ¢(z-q¢) = (2-¢)e1 =z2e(qe1l) = zec(q). In particular,
c is W-equivariant.

The following lemma provides an analogue of the push-pull formula of |
Theorem. 12.4].

)

Lemma 6.9. Given subsets Z' C Z of II, we have Az= oc= co Cz/z.

Proof. By definition, we have
Ag/z/(c(q)) = Y=z 0 c(q) = c(Yz/= - q) = c(Cz/=/(q))- U

7. RELATIONS BETWEEN BASES COEFFICIENTS

In this section we describe relations between coefficients appearing in decompo-
sitions of various elements on the different bases of Qw and of Q5.

Given a sequence I = (i1,...,%m), let I™ := (iym, ..., 11).

Lemma 7.1. Given a sequence I in {1,...,n}, for any xz,y € S and f, f' € Q3
we have

Cn(Ar(2)y) = Cu(zApe(y)) and Au(Br(f)f') = Au(fBr(f")).

Similarly, we have

Cn(Cr(2)y) = Cu(zCre(y)) and Au(Ar(f)f') = An(fAr-(f").
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Proof. By Lemma 5.9.(b) we have Y X, = 0 for any « € II. By (4.5) we obtain
0= AH(Ba(Sa(f)f/)) = AH(fBa(f/) - Ba(f)f/)-
Hence, An(Ba(f)f') = An(fBa(f")) and An(Br(f)f’) = An(fBpe(f')) by itera-

tion.
To prove the corresponding formula involving Aj, note that A, = ko — Bg, SO

an(f/)_Aa(f)flzf(’{a'f/_Ba(fl))_(’fa°f_Ba(f))f/

(LQ) Ba(f)f/ - fBa(fl) = Ba(sa(f/)f)’

s0 An(Aa () f) = An(fAL(f")) and again An(Ar(f)f") = An(fApre(f)) by iter-

ation. The formulas involving C' operators are obtained similarly. ([l

Corollary 7.2. Let I = (i1,...,im) be a sequence in {1,...,n}. Let

Xr = E afvév and Xpreo = E a’ffvév for some alv, aIU €Q,
veW veEW

then v(xm) afy, = v(afv,l) zr. Similarly, let

Y, = E aIUU and Yire = E a’ 6 forsomealy7 aIUEQ7
veEW veW

then v(xm) af’, = v(ay 1) o

Proof. We have
v(2n)An (Bl(fe>fv) = U(iﬁn)An((XI ° fe)fv) = U(xl'I)AH((Z w_l(ai(,w)fuﬁl)fv)

=v(zn)An (v(afv,l)fv) Y v(afv,l)l,

and symmetrically

II?HAH (feBIre" (fv)) = IHAH (fe Z a/j)fwéw L fv)

= -THAH (fe Z vw_l(a/]),(w)fvw_1>

= znAn(af’, fo) = a5, 1.
Lemma 7.1 then yields the formula by comparing the coefficients of X; and Xjrev.
The formula involving Y7 is obtained similarly. [

Lemma 7.3. For any sequence I, we have
Apreo(anfe) = Z v(xn)a}iva and  Bre(anfe) = Z v(xn)afva.
veW veW

Proof. We prove the first formula only. The second one can be obtained using simi-
lar arguments. Let Ypev =37y a’{vdv and Y7 =) oy a}/’vdv as in Corollary 7.2.

Apeev(znfe) = Yiew 0 xnfe = Y an(al,dy o fo)
veW

= Z xn(a/}:} o f,—1)= Z v aI o) fo—1 = Z zrv(ay Y1) fo-

veW veW veW
The formula then follows from Corollary 7.2. (]
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Let { X7, }wew and {Y} },ew be the Q-linear bases of Qy, dual to { X7, fwew

and {Y7, }wew, respectively, i.e. X7 (X;,) = &y, for w,v € W. By Lemma 3.2 we
have 6, = > _ bX, X7, =5 _ by Y7 . Therefore, by duality we have

w<v Yv,w w<y Yv,w

(7.1) Xi, = biufo and Y7 => b, fo

v>w v>w
Lemma 7.4. We have X7 =1 and, therefore, Xj (2) = 2-1, 2 € Qw (the action
defined in (4.3)). For any sequence I with £(I) > 1, we have X} (X7) = X;-1=0
and, moreover, if we express X; = ZDEW G+ X1,, then g. = 0.

Proof. Indeed, for each v € W we have X} (6,) = b\, = 1 = 1(6,). Therefore,

X7 = 1. The formula for X7 (z) then follows by (4.4). Since X, - 1 = 0, we have
X1 -1=0. Finally, we obtain

0=Xr-1=> qX1,-1=¢+ Y @X5,-1=q. O
veW L(v)>1
Lemma 7.5. Let wq be the longest element in W of length N. We have
An(X; Y= (-1)"1  and Ap(Yy )=1.

Ly wo

Proof. Consider the first formula. By Lemma 3.2 §, = > by X1, with b, =

w<y Yv,w
Ty, therefore X7 =3 o by o fo- Lemma 6.6 yields
AH(XIw) = Z v(gjn)l-

v>w

N
If w = wy is the longest element, then AH(X}ka) = CD fugg (—=1)N1 by (3.3).

wo(2m)
The second formula is obtained similarly using Lemma 3.3 instead. ]

Lemma 7.6. For any reduced sequence I of an element w and q € QQ we have
X1g=" $1.(0)X1, for some ¢1.(q) € Q.
v<w

Proof. For any subsequence J of I (not necessarily reduced), we have w(J) < w by
[ , Th. 1.1]. Thus, by expanding all products of X; = --(1 — §;), moving all
coefficients to the left, and then using Lemma 3.2 and transitivity of the Bruhat
order,

Xrq=Y_ bruw(@dw=>_ éruw(@)X,

wlv w<lv

for some coefficients ¢~)I7w(q) and ¢r1.,(q) € Q. ]

8. ANOTHER BASIS OF THE Wz-INVARIANT SUBRING

Recall that {f3}wewy = is a basis of the invariant subring (Qj,)""=. In the
present section we construct another basis {X} },ew= of the subring (Q7,)"=,
which generalizes | , Lemma 4.34] and | , Lemma 2.27].

Given a subset = of II we define
W= ={we W | l(wsy) > l(w) for any a € Z}.

Note that W= is a set of left coset representatives of W/Wz such that each w € W=
is the unique representative of minimal length.
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We will extensively use the following fact | , §1.10]:

(8.1) For any w € W there exist unique « € W= and v € Wz
such that w = uv and £(w) = £(u) + £(v).

Definition 8.1. Let = be a subset of II. We say that the reduced sequences
{Iy }wew are E-compatible if for each w € W and the unique factorization w = uv
with w € W= and v € Wz, €(w) = £(u) + £(v) of (8.1) we have I, = I, UI,, i.e. I,
starts with I, and ends with I,,.

Observe that there always exists a Z-compatible family of reduced sequences.
Indeed, one could start with arbitrary reduced sequences {I, },ew= and {I, }rew=,
and complete it into a Z-compatible family {I,},ew by defining I,, as the con-
catenation I, U I, for w = uv with w € W=, v € Wz.

Theorem 8.2. For any Z-compatible choice of reduced sequences {Iy}wew, if
u € W=, then for any sequence I in Wz of length at least 1 (i.e. o; € = for each i
appearing in the sequence I), we have

X7, (2X1) =0 for all z € Qw.

Proof. Since {X1, }wew is a basis of Qw, we may assume that z = X, for some
w € W. We decompose X; = Zvewg Gu X1, with ¢, € Q. By Lemma 7.4 we may
assume v # e.
We proceed by induction on the length of w. If £(w) = 0, we have X, = X;, = 1.
Since W= N WE = {e}, for any v € Wz, v # e, we conclude that X7, (X1,)=0.
The induction step goes as follows: Assume ¢(w) > 1. Since the sequences are
=-compatible, we have

X7, Xr=Xy,X1,Xr=Xr,Xp, where w' € W=, v' € Wz, I' € Wz, and

w

¢(I') > 4(I) > 1. We can thus assume that w € W=, so that by Lemma 7.6,

X1, X1 = Z(XI“,QU)XL, = Z é1,,,0(q0) X1, X1, -

v#e w<w,v#e

w

Now X7 (X1,X1,) = X7, (Xy,,) = 0since wov is not a minimal coset representative:

indeed, we already have w € W= and v # e. Applying X7, to other terms in the
above summation gives zero by induction. (I

Remark 8.3. The proof will not work if we replace X'’s by Y’s, because constant
terms appear (we can not assume v # ¢).

Corollary 8.4. For any Z-compatible choice of reduced sequences {I,}uew, the
Jamily {X7 }uews= is a Q-module basis of (Qy,)"=.

Proof. For every a; € = we have
(0; X7 )(2) = X7 (20;) = X7, (2(1 =2, X)) = X7, (2), z€Qw,

where the last equality follows from Theorem 8.2. Therefore, X7 is Wz-invariant.
Let o € (Q)"=, i.e. for each ; € ZE we have 0 = s;(0) = §; # 5. Then

0(2X)) = 025 (1~ 60,)) = 0(255) = (8 0 0)(255) = (0~ G0 o) (25) =0

Z——
Ta,
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for any z € Qw. Write 0 = > oy #w X, for some z,, € Q. If w ¢ W=, then I,
ends with some 4 such that «; € Z which implies that

Ty = O'(X[w) :U(XI;UXi) ZO7

where I is the sequence obtained by deleting the last entry in I,. So o is a linear
combination of {X} },cw=. O

Corollary 8.5. If the reduced sequences {I,}wew are Z-compatible, then bifv,u =

bf,u for any v € W=, u € W= and w € W, where bf,fv,u are the coefficients of
Lemma 3.2.

Proof. From Lemma 3.2 we have X7 =37 -, bfﬁufw. By Lemma 4.2 we obtain
that v(X7 ) = > bX  fup—1 for any v € Wz. Since X7, is Wz-invariant by

w>u WU

Corollary 8.4 and {f, }wew is a basis of QF,, this implies that b =by, O

wv—1u
9. THE FORMAL DEMAZURE ALGEBRA AND THE HECKE ALGEBRA

In the present section we recall the definition and basic properties of the formal
(affine) Demazure algebra D following | ], [CZ7] and | ].

Following | ], we define the formal affine Demazure algebra Dp to be the
R-subalgebra of the twisted formal group algebra Qw generated by elements of S
and the Demazure elements X; for all ¢ € {1,...,n}. By | , Lemma 5.8], Dp
is also generated by S and all X, for all a € 3. Since Kk, € S, the algebra Dp is
also generated by the Y, ’s and the elements of S. Finally, since §, = 1 — z,X,, all
elements §,, are in Dp, and Dp is a sub-Sy/-module of Qw , both on the left and
on the right.

Remark 9.1. Since {X1, }wew is a Q-basis of Quw, restricting the action (4.3)
of Qw onto Dy we obtain an isomorphism between the algebra Dy and the R-
subalgebra D(A) g of Endg(S) generated by operators A, (resp. Cy,) for all « € 3,
and multiplication by elements from S. This isomorphism maps X, — A, and
Y, — C4. Therefore, for any identity or statement involving elements X, or Y,
there is an equivalent identity or statement involving the operators A, or C,.

According to | , Theorem 6.14] (or [CZZ, 7.9] when the ring R is not
necessarily a domain), in type A,, the algebra Dp is generated by the Demazure
elements X;, ¢ € {1,...,n}, and multiplication by elements from S subject to the

following relations:

(a) )(l2 = HiXi

(b) XZX] = X]‘Xi for |’L —]| > 1,

(C) XZXJXZ — X]XZXJ = Iiij(Xj — Xi) for |Z 7]| =1 and

(d) Xiq = si(a)Xi + Ailq),

Furthermore, by | , Prop. 7.7], for any choice of reduced decompositions
{Iy}wew, the family {X;, }wew (resp. the family {Y7, }wew)) is a basis of Dp as
a left S-module.

We show now that for some hyperbolic formal group law F},, the formal Demazure
algebra can be identified with the classical Iwahori-Hecke algebra.

Recall that the Iwahori-Hecke algebra H of the symmetric group S,41 is a
Z[t,t~1]-algebra with generators T;, i € {1,...,n}, subject to the following re-
lations:
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(A) (T; +t)(T; — t=1) = 0 or, equivalently, T? = (t~1 — ¢)T; + 1,

(B) T;T; = T,T; for |i — j| > 1 and

(C) TVI,T;, = T;TT; for |i — j| = 1.
(The T;’s appearing in the definition of the Iwahori-Hecke algebra | , Def. 7.1.1]
correspond to t7; in our notation, where t = q*1/2.)

Following | , Def. 6.3] let D denote the R-subalgebra of Dy generated by
the elements X;, ¢ € {1,...,n}, only. By | , Prop. 7.1], over R=C, if F = F,
(resp. F' = F,;;), then Dp is isomorphic to the completion of the nil-Hecke algebra
(resp. the 0-Hecke algebra) of Kostant-Kumar. The following observation provides
another motivation for the study of formal (affine) Demazure algebras.

Let us consider the FGL of example 2.2 with invertible p;. After normalization
we may assume f3 = 1. Then its formal inverse is —%5, and since (1+po;7;)Tsy; =
x; + xj — x;x;, the coefficient k;; of relation (c) is simply po:

TitjTy LTitjT—q TiTyj TiXjTi4 g TiXjTi45

(91) Kij = 1 1 1 mitwj—wimy—@ig; (A pedi®))Tig; —Tiy; _ Lo
Proposition 9.2. Let F}, be a normalized (i.e. p1 = 1) hyperbolic formal group law
over an integral domain R containing Z[t,t~], and let a,b € R. Then the following
are equivalent
(1) The assignment T; — aX; + b, i € {1,...,n}, defines an isomorphism of
R-algebras H @z 1) R — DF.
(2) We havea = t+t=! or —t—t=! and b = —t ort~* respectively. Furthermore
po(t + 1712 = —1; in particular, the element t +t=1 is invertible in R.

Proof. Assume there is an isomorphism of R-algebras given by T; — aX; +b. Then
relations (b) and (B) are equivalent and relation (A) implies that

0= (aX;+b)*+(t—t " (aX;+b)—1 = [a®+2ab+a(t—t ") X;+b*>+b(t—t~) 1.

Therefore b= —tort ' anda =t"! —t —2b =t 4+t~ or —t — t~! respectively,
since 1 and X; are S-linearly independent in Drp C Dp.
Relations (C) and (a) then imply

0= (ClXZ‘ + b)(ClXj + b)(CLXL + b) - (an + b)(aXZ + b)(an + b)
= o’ (XiX;Xi — X;XiX;) + (a®b + ab®) (X, — X;).

Therefore, by relation (c) and (9.1), we have a®us — a?b — ab* = 0 which implies
that 0 = a?ps —ab — 0% = (t +t7 1) 2y + 1.

Conversely, by substituting the values of a and b, it is easy to check that the as-
signment is well defined, essentially by the same computations. It is an isomorphism
since a = (¢t +t~1) is invertible in R. O

Remark 9.3. The isomorphism of Proposition 9.2 provides a presentation of the
Iwahori-Hecke algebra with ¢ +t~! inverted in terms of the Demazure operators on
the formal group algebra R[A]p, .

Remark 9.4. In general, the coefficients 1 and ps of Fj can be parametrized
as (41 = €1 + €2 and puo = —ej€g for some €1,60 € R. In 9.2 it corresponds to
€ = # and ey = t—t&% (up to a sign) and in this case | , Thm. 4.1] implies
that F} does not correspond to a topological complex oriented cohomology theory

(i.e. a theory obtained from complex cobordism by tensoring over the Lazard ring).
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Observe that such Fj, still corresponds to an algebraic oriented cohomology theory
in the sense of Levine-Morel.

10. THE ALGEBRAIC RESTRICTION TO THE FIXED LOCUS ON G/B

In the present section we define the algebraic counterpart of the restriction to
the T-fixed locus of G/B.

Consider the S-linear dual S}, = Homg(Sw,S) of the twisted formal group
algebra. Since {J,, }wew is a basis for both Sy and Qw, S, can be identified with
the free S-submodule of Qf;, with basis { fu, }wew or, equivalently, with the subset

{f € Qy [ f(Sw) € S}

Since 6, = 1 — z, X, for each o € X, there is a natural inclusion of S-modules
n: Sw — Dp. The elements {X;, }wew (and, hence, {Yr, }wew) form a basis
of Dy as a left S-module by [ , Prop. 7.7]. Observe that the natural inclu-
sion Sy — Qw factors through n. Tensoring n by @) we obtain an isomorphism
ng: Qw 5 Q ®g Dp, because both are free Q-modules and their bases {X71, hwew

are mapped to each other.

Definition 10.1. Consider the S-linear dual D} = Homg(Dp,S). The induced
map n*: D}, — S}, (composition with n) will be called the restriction to the fized
locus.

Lemma 10.2. The map n* is an injective ring homomorphism and its image in
Sty C Qy = Q ®s Sy coincides with the subset

{f €S| fDr)C S}
Moreover, the basis of D} dual to { X1, fwew s {X], fwew in Q.

Proof. The coproduct A on Qu restricts to a coproduct on D by | , Theo-
rem 9.2] and to the coproduct on Sy via n. Hence, the map n* is a ring homomor-
phism.

There is a commutative diagram

*

* n *
—
DF SW

J, »,76

Q®s DR —— Q®s Sy

~

where the vertical maps are injective by freeness of the modules and because S
injects into ). The description for the image then follows from the fact that
{X1, }wew is a basis for both Dp and Qw .

The last part of the lemma follows immediately. O

By Lemma 10.2, 0 € D} C Q7 means that o(Dp) C S. For any X € Dp we
have (X e0)(Dp) =c(DrpX) C S, so X eo € D}.. Hence, the ‘o’-action of Qu on
Q3 induces a ‘o’-action of Dp on D7.

For each v € W, we define

foi=xnef,= v(zn)fy € Qy, e fv( Z Gwlw) = v(211) G-

weWw
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Lemma 10.3. We have fu € D} for anyv e W.

$w0
’ v(xwo)
S for any v € W, so it suffices to show that zp f, € D}.. If v = wp, by Lemma 3.2,
we have

is invertible in

Proof. We know that 1 = wo (24, ), and by Lemma 3.1.(e)

_ X X _ N 1 .
X1, = E Arpo oOws Where ag, = (-1)" =, so

Tag
w<wq

(@r1uw0)(X1,) = @n1fue) (Y Grawbu) = (@100, )0, = (=1 L6000, € 5.
w<u
By Lemma 10.2, we have z f,,, € D%. For an arbitrary v € W, by Lemma 4.2, we
obtain

rrfo = Tnf gty = v wo (211 fu) = v wo (21 fu,) € D U
Corollary 10.4. For any z € Dp, we have xppz € Sw and zx € Sw.

Proof. It suffices to show that for any sequence I,, xn X, and Xj zn belong to
Sw . Indeed,

anI,U =n Z CL,UX7w(Sw = Z(mnaUX,w)éw = Z(xﬂfw)(va)éw € SW,

w<v w<v w<v
and
Xr,xn = Z aifwéwxn = Z aiww(xn)éw = Z(w(xn)fw)(va)éw e Sw. O
w<v w<v w<v

Let ¢: Dr — Sw be the multiplication on the right by zr (it does indeed land
in Sy by Corollary 10.4). The dual map ¢*: S}, — D% is the ‘e’-action by i,
and ¢*(fy) = fo.
Remark 10.5. In T-equivariant cohomology, the map ¢* corresponds to the push-
forward from the T-fixed point set of G/B to G/B itself, see | , Lemma 8.5].

In the topological context, for singular cohomology, it coincides with the map i,
discussed in [ , p-8].

Lemma 10.6. The unique maximal left Dp-module (by the e-action) that is con-
tained in Sy, is Dp.

Proof. Let f be any element in a given Dp-module M contained in Sj;,. Then
XrefeMC S}, for any sequence I, and (X e f)(d.) = f(X;) € S. Since the
X1’s generate Dy as an S-module, we have f(Dp) C S, and therefore f € D} by
Lemma 10.2. O

Define the S-module
Z={feSy | Bi(f) € Sy for any simple root «; }.

Since for an element f =3y qufuw, qw € S We have

w—Gws; Qw —=s, (o W
Bi(f)=X;ef =) Mg = N _—wenty

Tw(ery) Tw(ay)
weW wew

this can be rewritten as
Z:{Z Qu fuw € Siy | #4512 € S for any root o and any w € W}.
wew
The following theorem provides another characterization of D7
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Theorem 10.7. We have D}, C Z, and under the conditions of Lemma 2.7, we
have D}, = Z.

Proof. Since D}, C S§, is a sub-Dp-module, we have D}, C Z. By Lemma 10.6,

7 is the unique maximal D p-module contained in Sf;,, so we only need to prove
that Z is a D pg-submodule.

It suffices to show that for any f € Z and for any simple root «;, the element
X; e f is still in Z, or in other words, that for any two simple roots o; and o, we
still have X;X; o f € S}, If o = vy, it follows from Xf =k X;.

If sj(;) = ag, then s;s; = sjs;. Let f = > v qufuw, then X; o f =

w —quws, _ 9w —Quws;
Y wew T Sw. Set py, = e then

Pw—Pws; Qw—Guws; —Guws; Tqwsjs;
(XX ef=D i fu= D L fu

mu’(aj) mw(ai)mw(a]-)

weWw weW

Rearranging the numerator, we see that it is divisible by both @, (a,) and zy(a;),
so it is divisible by Ty (a,)Tw(a;) Py Lemma 2.7.

Suppose s;(a;) # a;. Then s;(a;) # oj. Since X; @ f =3 py, fu, with p, € S
as above, we need to prove that the coefficient of f,, in X;X; e f is in S, for any w.
This coefficient is

Po—Pws;  (Qw=qws;)Tws; (o) ~(Qus; —qQwsjs;)Tw(ay)

Tw(ay) T (ag) Tw(ay)Tws;(a;)
Since the numerator is already divisible by Zy(q,) and by %y, (a,) by assumption,
it suffices, by Lemma 2.7, to show that it is divisible by x,(q;). Setting v = w(a;)
and v = w(a;), it becomes (qu — s,w)Ts, () = (Gsyw — @sy5,w)Tu- Using that
T (v) = F(zy,2_y4v)y) = o, mod z,, the numerator is congruent to (cf. the
proof of | , Lem. 5.7])

((Qw - qSA,w) - (QSyw - ‘ISvsuw))xv

which is 0 mod z,, by assumption. O
Remark 10.8. The geometric translation of this theorem (] , Theorem 9.2])
generalizes the classical result | , Proposition 6.5.(1)].

Remark 10.9. In Theorem 10.7, it is not possible to remove entirely the assump-
tions on the root system and the base ring, as the following example shows. Take
a root datum of type Go, and a ring R in which 3 = 0, with the additive formal
group law F over R. Then, S is Y-regular, and if (aq, a2) is a basis of simple roots,
with 8 = 23 + 31 being the longest root, we have x5 = 2z, = —%4,. It is not
difficult to check that the element f = ([],cx+ qzp%a)fe isin Z, but

X)) =T wa) s =L s,

Tg
a€EXt a#

so f & D}. Therefore, Z 2 D7. Indeed, Z is not even a D p-module.

Recall from (7.1) that X7, = szw bffwfv and YJ' = szw b%/?wfv.

Corollary 10.10. For any v,w € W and root «, we have 4 | (b, — b , ) and
To | (B) 0 —bY 4)-

SaU,Ww
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Remark 10.11. It is not difficult to see that Corollary 10.4 and Corollary 10.10
provide a characterization of elements of Dy inside Qyy. This characterization co-
incides with the residue description of D in [Z7, §4], which generalizes Ginzburg—
Kapranov—Vasserot’s construction of certain Hecke algebras in | ]

For any = C II and w € W, define

= b1 o= byt
Xp =Y 6,22 and Vi =) §,-ol
veW= veWs
By Lemma 3.2, bf’e =1, s0

X5 = Z byt =Yz
veWz=

I\Iote that AYE does not depend on the choice of reduced sequences {I,, }wew, but
XIEw and YED do, since bf}v and bg,v do for w such that ¢(w) > 3. Moreover, we
have

(10.1) X efo=X; and Y'ef. =Y/

by a straightforward computation.

Lemma 10.12. For any = C1II and w € W, we have XIE € Dr and ?IE € DpF.

Proof. The ring Qw is functorial in the root datum (i.e. along morphisms of lattices
that send roots to roots) and in the formal group law. This functoriality sends
elements X, (or Y,) to themselves, so it restricts to a functoriality of the subring
Dp. It also sends the elements X IEw (or YEU) to themselves. We can therefore assume
that the root datum is adjoint, and that the formal group law is the universal one
over the Lazard ring, in which all integers are regular, since it is a polynomial ring
over Z.

Consider the involution ¢ on Qy given by ¢d,, +— (—=1)*®w=1(q)d, 1. Tt satisfies
1(z2") = 1(2")e(2). Since 1(X,) = Y_g, it restricts to an involution on Dp.

To show that XIEW € Dp, it suffices to show that L(XIEW) € Dp. We have

= v bffl w v
UXE) = D () =zes, = L N (1)), 6

veEWS vEWE
Since the root datum is adjoint, we have Dp = {f € Qw | f-S C S} by | ,
Remark 7.8], so it suffices to show that +(XF ) -z € S for any = € S. We have

L()A(IEM) ST = a%: Z (—1)2(”)va,wv(x).
N veEW=
By Lemma 2.7, it is enough to show that Zvew(—l)f(“)bffwv(x) is divisible by z
for any root o € 2. Let *Wz = {v € Wz|l(s4v) > £(v)}. Then (—1)/Ca?) =
—(—1)6(”) and Wz = *W= U s,*Wz. So
Yo DO ) = Y (D)) = 0, wsav(@))

veWs= verWs

= Z <_1)€(U) (b'uX,wU(x) - va’wSaU(QT) + b’i(,wsav(’r) - biv,wsav(x)>
ve*Wz

= Z (_1)6(1)) (va,watAOt (’U(SL')) + (bi))(:w - bgiv,w)sav(x))
ver*Wg
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which is divisible by 2, by Corollary 10.10. Therefore X7 € Dp. The proof that
VE € Dp is similar. 0

Theorem 10.13. Qy, is a free Qw-module of rank 1 generated by f., for any
w € W, and D% is a free left D p-module of rank 1 generated by f,, for anyw € W.

Proof. Since 0, @ fi, = fi,u-1, we have Qw o f,, = Qy,. Moreover, if 2 =3y, q,0,
such that z e f,, =0, then >y ¢ fuw-—1 =0,50 ¢, =0 for allv € W, ie. 2z =0;
the first part is proven.

To prove the second part, note that by Lemma 10.3 fe € D7 for any w. More-
over, { fe} is Qw-linearly independent by the first part of the proof, hence it is
D p-linearly independent. On the other hand, Dy e fe = D% by Lemma 10.12 and
(10.1), so f. generates D7 as a left Dp-module. Since fu = w%&,n)éwﬂ e f., and

21 ¢ S by Lemma 3.1.(¢), the same is true for f,. O

w(zm)

11. THE ALGEBRAIC RESTRICTION TO THE FIXED LOCUS ON G/P

We now extend the results of the previous section to the relative case of W/Wz.

For any = C II, let Sy w. be the free S-module with basis (dg)pew/w= (it is
not necessarily a ring). Let Qw/w. = Q ®s Sw/ws. be its Q-localization. There
is a left S-linear coproduct on Sy w., defined on basis elements by the formula
dg > 0p ® dg; it extends by the same formula to a Q-linear coproduct on Q.-
The induced products on the S-dual S}, W and the Q-dual Qy, /W= are given by

the formula fyfo = 055 fo.

, W

If 2 C 2 and w € W/W=/, let @ be its class in W/W=. We consider the
projection and the sum over orbit maps

p=/= ¢ Swywe, — Swywe= and  dzz: Sww= — Swiwe
571, —> 5’&) 5@ —> Z 65.
vEW/ Wz
with S-dual maps =1
Pz Syywe = Stvyywe, and  dZ = 0 Siy ., = Stywe
fo = X fi fo = fa.
’T}EW/YVE/

We use the same notation for maps between the corresponding @Q-localized mod-
ules Qw/w- and Qw/w.,, and we write p*E/E/ and d;/E, for their -dual maps. As
usual, when =’ = (), we omit it, as in p= : Sw — Sw/w.. Note that the maps p=/=/
preserve the coproduct (the maps dz/= don’t), and thus the dual maps pZ /= and
p;/E, are ring maps. We set Dp= := p=(Dr) C Qw/wx-

The coproduct on Q. therefore restricts to a coproduct on Dp=. We then
have the following commutative diagram of S-modules which defines the map 7=

SWC ]:)FC QW

(11.1) l l |

SW/WECL Dr=—— Qw/ws-

n

Lemma 11.1. The map p=/=: Qw/w., — Qw/ws= restricts to Dp=' — Dpz=.
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Proof. Tt follows by diagram chase from Diagram (11.1) applied first to = and then
to =, using the surjectivity of p=/: Dp — Dpz/. O

Lemma 11.2. We have p=(2X,) =0 for any a € ¥z and z € Qw .

Proof. Since p=z is a map of @-modules, it suffices to consider z = §,,, in which case
(San = m(sw — méwsa, SO p(5an) = m(&@ — 6@) =0. (I
For any w € W, let X7 (resp. Y7 ) be the element p=(X;,) € Dpz= (resp.
p=(Y1,) € Drg=).
Lemma 11.3. (a) Let {I,}wew be a family of Z-compatible reduced sequences.
If w¢ W=, then XIEw =0.
Let {1, }wews= be a family of reduced sequences of minimal length. Then
(b) the family {XT }yews= forms an S-basis of Dpz and a Q-basis of Qw w -
(c) the family {YEU }wews= forms an S-basis of Dpz and a Q-basis of Qw we, -
Proof. (a) If w € W=, then w = uv with u € W= and e # v € W=. By Lemma 11.2,
we have p=(Xy,) = p=(X7,X1,) = 0.

(b) Let us complete {I,,},ew= to a E-compatible choice of reduced sequences
{Iy }wew by choosing reduced decompositions for elements in Wz. Since { X1, byew
is a basis of Dp, its image Dp = in Qw/w. is spanned by {XIEw}wEWE by part (a).
Writing X7, =Y, ,, a0, yields X7 =37 _ ay ,05. Since w € W= is of min-
imal length in wWz, the coefficient of & in X_IEw is ay ,, = (fl)z(w)i, invertible
in @, so the matrix expressing the {X7 },,c= on the basis {dg},ew= is upper
triangular with invertible (in @) determinant, hence {XIEw Ywews is Q-linearly in-
dependent in Qw/w. and therefore S-linearly independent in Dp=.

(c) Applying p= to the expression of Corollary 3.6 for v € W= and using (a) we
obtain Y= = (—1)WXF +> _ cowXT , w € W= Hence, the matrix expressing
Yi~’s in terms of X7 s is upper triangular with +1 on the main diagonal. O

Observe in particular that Dy ~ S with the basis {X'zl)T =0z}

Definition 11.4. The dual map nz : Dz — S;V/WE is called the algebraic re-

striction to the fixed locus.
As in Lemma 10.2, and by a similar proof, we obtain:

Lemma 11.5. The map 0t is an injective ring homomorphism and its image in
S;V/WE - Q"‘jV/WE coincides with the subset

{f €Sk w | fDrz) € S}
Moreover, the basis of Dz dual to {XT }yews= (resp. to {Y }ew=) maps to
{(X5) Ywews (resp- to {(Y)"} ew=) in Qiy -

So far, the situation is summarized in the diagram of S-linear ring maps

Dy S,

(11.2) pgj\ J\pé
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in which both columns become injections Q7 W= Q3 after Q-localization. The
geometric translation of this diagram is in the proof of Corollary 8.7 in | ]

Lemma 11.6. For any Z-compatible choice of reduced sequences {Iy}wew, the

We-invariant subring (D%)"= is a free S-module with basis {X} },ew=.

Proof. 1t follows from Corollary 8.4 since (D%)"= = (Q},)"V= N D%. O

Lemma 11.7. The injective maps p%: S;V/WE — Sy, PE: Q}‘,V/WE — Q3 and
pz: Dz — D¥% have images (St )=, (Q)W= and (D3)"=, respectively.

Proof. For any w € W, we have pi(fz) = f=. Thus P=(Qiyyw.) = Q)=
by Lemma 6.1. Similarly, p£(S§, ) = (Sfy))""=. Take a =Z-compatible choice of
reduced sequences {1, }wew. Dualizing the fact (Lemma 11.3) that p=(X7, ) = X7,
is 0 if w ¢ W= and a basis element otherwise, we obtain that p£((X7 )*) = X} if
w € W=, and thus the conclusion for D} - by Lemma 11.6. O

Remark 11.8. Note that if {I,, }wew is not Z-compatible, then we may not have
pE((XF,))*) = X, forallw € W=. Even if it is E-compatible, in general p£((Y7 )*)
is not equal to Y7 , which needs not be fixed by W=.

Through the resulting isomorphism D} = ~ (D%)"=, we obtain

Diz={f€Shw. | f(Drz) C S}
~ (Dp)"= ={f € (S})"= | f(DF) C S}
={feSy | f(Dp)CSand f(Kz) =0}

where Kz is the kernel of p=, i.e. the sub-S-module of D generated by (X7, )wgw=
for a =Z-compatible choice of reduced sequences {I,, }wew -

Since (D%)"= = D%N(S5;,)"=, an element of Sty we 18 In Dz if and only if its
image by p% is in D%. Since B, (f) =0 when f € (S};,)""= and a € Wz, Theorem
10.7 then gives:

Theorem 11.9. Under the conditions of Lemma 2.7, an element f € S{jV/WE s in
D7z if and only if Boopx(f) € Sy for any o & ¥=. In other words, f =3 quw fw
is in Dz if and only if @y (a) divides qw — Gsyw for any w € W/Wz= and any
« ¢ ZE-

12. THE PUSH-PULL OPERATORS ON D%

In this section we restrict the push-pull operators onto the dual of the formal
affine Demazure algebra D7, and define a non-degenerate pairing on it.

By Lemma 10.12, we have Y= € Dp, so

Corollary 12.1. The operator Y= (resp. As) restricted to S (resp. to D}.) defines
an operator on S (resp. on D%.). Moreover, we have

C=(S)Cc S"=  and A=z(D%)C (D5)"=.

Proof. Here Yz acts on S C @ via (4.3). Since Yz e Dp C{z € Qw | 2-5S C S}
by | , Remark 7.8] and Y= - Q C (Q)"=, the result follows.



PUSH-PULL OPERATORS 29

As for Ag, by Lemma 10.2 any f € D% has the property that f(Dp) C S.
Therefore, (Az(f))(Dr) = (Yz o f)(Dr) = f(DrYz) € 5, so A=(f) € Dj. The
result then follows by Lemma 6.4. O

Corollary 12.2. Suppose that the root datum has no irreducible component of type
Cs¢ or that 2 is invertible in R. Then if |Wa/| is regular in R, for any =’ C = C I,
we have

Cz/= (S"=") C SW=.
Proof. Let € SW=', then |W=/|- 2 =3y, w(z). So we have

War| - Oz (@) = Cojz ((War|-w) = Y u(lZ=ln)

a:E/E’
’U.GWE/E/
_ _x N Tz W=
- Z Z uv(EE/E/)— Zw( IE)ES .
u€Wg zr vEWz/ weW=
Thus [Wz/| - Cz/=/(x) € S, which implies that Cz/=/(x) € S by | , Lemma 3.5].
Besides, it is fixed by Wz by Lemma 5.5. O

Corollary 12.3. If |W| is invertible in R, then Cz /= (SW=') = W=,

Proof. From the proof of Corollary 12.2 we know that for any x € SW='| |[Wxz|z =
C= - (r2=), so C=(S) = SW=. The conclusion then follows from the identity Cz /= 0
C=z, = Cz of Lemma 5.7. O

Theorem 12.4. For any v,w € W, we have
AH(Y}:A151’<fe)) = 55,21 = AH(XZBI:;v(JEe))-
Consequently, the pairing
Anq: DL x D — (D)WY =S, (0,0') — An(oo’)

is non-degenerate and has the property that (Ajsv(fe))wew is dual to the basis
(Y7 Joew, while (Br(fe))wew is dual to the basis (X}, )vew -

Proof. We prove the first identity. The second identity is obtained similarly.

Let Yiev = 30 cpy Gy 00 and Y7, = D7y G w0y Let 6y = D0 cppy buw Y7, SO
that >,y Gw,wbou = Ohy', and Y7 = vew boufo

Combining the formula of Lemma 7.3 with the formula Ap(f,) = —~—~1 of

v(zm)
Lemma 6.6, we obtain

An(Y7 Apge(nfe) = Y bout(@m)aweAn(fo) = Y boutw,l =645, 1. O
veW vEW

13. AN INVOLUTION

In the present section we define an involution on Dy and study the relationship
between the equivariant characteristic map and the push-pull operators.

We define an R-linear involution 7 : Qw — Qw by

w(en)
T

7(00) = w™H(q) 5=y 0wt = Tn0y-14 5 = 0414

Lemma 13.1. We have 7(z122) = 7(22)7(21) for any z1,22 € Qw, and we have
72 =1id, i.e. the map T just defined is indeed an involution. It is the identity on Q
nside Qw .
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Proof. Clearly, for any ¢ € @, we have 7(q) = ¢ and 7(¢d,) = 7(dw)q, so it suffices
to check that 7(d,0,) = 7(dw)7(dy), which is immediate from the definition of the
multiplication in Qw . The identity 72 = id is obvious on the generators ¢d,,. O

Note that w%?mn) is in S for any w € W by Lemma 3.1.(e), so the involution 7
restricts to Sy.

Corollary 13.2. For any simple reflection o, we have 7(Xq) = Xo and 7(Y,) =
Y,. For any sequence I, 7(q¢X1) = Xyreoq. In particular, T induces an involution
on Dp.

Proof. By Lemma 13.1 it suffices to show that 7(X,) = X, which follows from
direct computation. O

Recall that the characteristic map ¢ : @ — Q7 introduced in 6.8 has the property
that ¢ — >, cw w(q) fuw, or in other words, ¢(q)(2) = z-q for z € Qw. In particular,
we have

c(q)(X1) = Ar(g) and c(q)(6w) = w(q), weW.

Lemma 13.3. For any q € Q and z € Qw, we have
An ((T(z) . fe)c(q)) =(z-q)1.

Proof. Let z = pdy,, p € Q, then 7(2) o f, = 5w71pwi?) o (zr1fe) = pw(zn) fu, so

An (=) @ fo)ela)) = An <<pw<xn>fw>< > v(q)fv)>

veEW
= An (pw(zn)w(q) fu) = pw(g)l = (2 - q)1. O

We have the following special cases of Lemma 13.3:

Corollary 13.4. For any sequence I and x € S, we have

An(c(q)Arer(fe)) = Cr(q)1 and An(c(q)Br=(f.)) = Ar(q)1.

Proof. Letting z = Y7 (resp. z = X) in Lemma 13.3, and using 7(Y7) = Yrev and
7(X1) = Xjrev from Corollary 13.2 we get the two identities. O

Corollary 13.5. For any z € Quw, we have A (7(z)e f.) = (z-1)1. In particular,
An(ge fo) = q1 and An(B(fe)) = Ape (1)1 = (5K7"1

14. A NON-DEGENERATE PAIRING ON THE SUBRING OF INVARIANTS

In this section, we provide two new S-module bases of invariants (D%)"= (see

Theorem 14.3). We also construct a non-degenerate pairing (D%)"= x (D%)"= —
(D%)W = S, corresponding to multiplication and push-forward to the base in the
geometric setting.

ForanwaWuEWEvveset

d};) xH/ Z aw wv? l‘n/ Z aw uv? = = H w(mH/E)

veW= veWs weWE

X

where aX ., and a) v are the coefficients introduced in Lemma 3.2 and 3.3.
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Lemma 14.1. For any w € W we have
A=(Ar(fe)) Z ay .t A=(Breo(fe)) Z ax I
uEWE uEWE

Proof. We prove the first formula only; the second one is obtained similarly. By
Lemma 7.3 and 6.6 we obtain

Az(Apee (e fe)) = A=( ) v(em)ay, , fo) = Y vlenz)ay,, fr-
veW veW
By (8.1), representing v = uv’, and using Lemma 5.1, we then express the latter as
Y E Y =
Z uvl(xH/E)aw,uv’ wv’ — Z u(xH/E)a’w,uv’fu . U
ueEWE v eWz wEWE, v/ €Wz

and diu belong to S.
Proof. It follows from Lemma 14.1 and the fact D} C Sy, . (I

Lemma 14.2. For any w € W,u € W=, we have d,

w,u

Theorem 14.3. For any choice of recNiuced sequences {I, }wews=, the two families
{AE(AI;-@U(fe))}uewi and {AE(BILEU(]”@))}uewE are S-module bases of (D%)W=.

Proof. Let us first complete our choice of reduced sequence to a =Z-compatible one,
by choosing sequences I,, for each u € W=. By Corollary 12.1 our families are in
the S-module (D%)"=. To show that they are bases, it suffices to show that the
respective matrices M2 and MZ" expressing them in terms of the basis {X} },cw=
of Lemma 11.6 have invertible determinants (in .5).

If u' € W= and v € Wz, we have u’ < u'v where the equality holds if and only if
v = e. By Lemma 3.3, we get auu /p =0 unless v’ < wand a) ,, = 0if v #e. This

implies that duyul = 0 unless ¢’ < u, and that

Y Y 1
Ay = u(rrr/=) Z al u(@myz)ay,, = uw(rn/z) ;-
veEWz
Hence, the matrix DY = (dY Duwews is lower triangular with determinant
pP= HueW~ . Similarly, the matrix D := (di{,u’)u,u’EWE is lower triangular with

(-1
determmant p=lluew= ——-

On the other hand, for u € W=, we have

Z bw u.fw = Z Z buvufu’v-

weWw weEWEveWs
By Corollary 8.5, and because X7 is fixed by Wz, we have bff,v’u = qu,’u. Therefore,

Z qu’,quu’v: Z bgmfs'

u' eWE v u' eWE

By Lemma 3.2, bﬁyu = 0 unless v/ > u, so the matrix EZX = {bﬁ,u}ul,uews is
lower triangular with determinant Huewg(fl)z(“)xu.
The matrix M = (EX)~!DZ has determinant

P= H (mi)z

ueWE

which is invertible in S by Lemma 14.5 below. Since the determinant of MY
(EX)~1DX differs by sign only, it is invertible as well.

o
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Recall the definition of ¥z from the beginning of section 5, and let wy = be the
longest element of W=.

Lemma 14.4. For any w € Wa, we have TywTyw, = = woz(r=). In particular, if
2 =1I we have Ty ZTyww, = Tuwg-

Proof. Recall from Lemma 3.3 that b)) ,, = 2 = [[,5-ns+ Ta- By (3.3), it also

equals szgmzi Zo. Since wozds = Eg, we have wwo =¥z N EJEF = wEJEr N EJEF.
Moreover,

(WEZ NI N (WEInNTE) cwSz NuwSt =wEzNXE) =10
and their union is Zg. [l

Lemma 14.5. For any = C II the product p= Huewz x% is an invertible element
mn S.

Proof. We already know that this product is in .S, since it is the determinant of the
matrix MZ whose coefficients are in S. Consider the R-linear involution u ~ % on
S = R[A]r induced by A — —\, A € A. Observe that it is W-equivariant.

For any o € =, we have

-

Tz = Sq(22)2 oz, = so(22)Taz,

(11

and, therefore, by induction 2=z = w(rz)Z,x, ! for any v € Wz. In particular,
T = w(a:n)xw —1 for any w € W. Then

W= _ w _ _
x‘E =l = H v(Tz)Tya, L and :c' | — H w(2) T 1.
veWz wew

If w = uv with £(w) = £(u) + ¢(v), by Lemma 3.1, part (d), Ty, = x,u(z,) and
Ty = Tyu(Z,). Hence

xH}V‘ = H w(Tr) Ty, H H uv(Tr1/222 ) Tun 4

(1

weW u€W= veWs
=11 U(xlr?// 1 w=)zwu(@)z; ")
(14.1) " iy
=TT (o) T tosiaess)
wews veWs
=2 T (@) "oz
ueEW=

On the other hand, by Lemma 14.4,

_|w=| _ Wz| 2
A = unean) ™ = [ o= = [ 22

veWs veWs=
d, i icular, 7| | = .S b
and, in particular, Ty ' = Hwew 0, we obtain
,\W| 2 2 /9
[T =11 II «%= 11 II «tutd)
weWw uweEWE veEWS uEWEveWs

:( H xz\ws|>( H u H 1’3)) :< H xi)le\< H_U@EUIWE\.

ueWE ueWs  veWsz ueWEe ueW=
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Combining this with equation (14.1), we obtain
_ ‘WEl _W| —|\W L _ _ |WE‘
(p51 H xi) = xln ‘a:nl | ( H u(a:Ele)a:uxu1>
ueEWE= ueWe
which is an element of S, since it is a product of elements of the form z,z-}, € S.

Therefore pz [], o= == is invertible, since so is its [Wz|-th power. O

Corollary 14.6. Given = C Z C Il we have Az(D%) = (D%)"=. For any set
of coset representatives Wz = the operator Az = induces a surjection (D})Wé —
(D3.)"= (independent of the choices of W=z by Lemma 6.5).

Proof. By Corollary 12.1 and Theorem 14.3, we obtain the first part. To prove the
second part, let o € (D%)"='. By the first part, there exists o/ € D% such that
o = Az/(0'), so by Lemma 6.3 we have

Az j=(0) = Az/= (A= (0')) = A=(0) € (D})"=.
Hence, Az /= restricts to Az/=: (D})"=" — (D})"=. Since Az(D}) = (D})"=,
we also have AE/E/((D})WE’) = (D%)"=. O
The following result can be viewed as an algebraic version of the Poincaré pairing.

Theorem 14.7. Assume that the choice of reduced sequences {I, }wew is E-compa-
tible. If u € W=, then

Any=(X7, Az(Brg(znfe))) = 6551
Consequently, the pairing
(D)= x (DR)"= = (D)WY =S, (0,0") = Anyz(00’)

is non-degenerate, { Az(Bre(znfe))} and { X7 tuews= being dual S-bases of
(Dj)"=.

uEWE

Proof. By Corollary 14.6, the pairing is well-defined (i.e. it does map into S). By
the projection formula (Lemma 6.4), the composition rule (Lemma 6.3) and Theo-
rem 12.4, we obtain

AH/E (X;uAE(BIfueV (:L‘er))) = AH/E (AE(X?“,BI{USV(foe)))
= An(X;, Brev(znfe)) = o', 1. a

15. ALGEBRAIC PUSH-FORWARDS AND THE PAIRING

In the present section, we construct an algebraic version of the push-forward
map and investigate its properties with respect to pull-backs, the Hecke action and
the non-degenerate pairing.

For any = C II, the Wz invariant subring S"= (resp. Q=) acts by multipli-
cation on the right on Sy /w. (resp. Qw/w.) by the formula (3, ¢uds) - ¢ =
> w dow(q )0 (note that w(q’) does not depend on the choice of a representative
w of w). When ¢ € SW= (resp. Q=) and f € S;;V/WE (resp. [ € Q*W/WE), we write
q e f for the map dual to the multiplication on the right by q.

Recall that df : Q*W/WE/ — Q*W/WE was defined at the beginning of section 11,

and that it sends fg to fg. By Corollary 5.2 we know that ﬁ c ()=



34 BAPTISTE CALM}\E]S7 KIRILL ZAINOULLINE, AND CHANGLONG ZHONG

We deﬁne AE/E’ . Q*W/WE/ — Q;V/WE by AE/E’ (f) = dE/E' ((1/.135/5/) [ ] f) The
left commutative diagram

=/ Pz
Quwywa < Qw Qe —— Qi
TEI/E’ Od:/E/T T'YE/E/ AE/E/\L JAE/E/
Q p= Q N pE ‘
w/ws S @w QW/WE — QW

in which -1/2z,= and -Yz/=/ mean multiplication on the right, dualizes as the right
one. Since pz restricts to a ring isomorphism D7, = 5 (D%)"= by Lemma 11.7 and
since Az = restricts to a map (D%)"=" — (D%)"= by Corollary 14.6, we obtain:

Lemma 15.1. The map Az/z: restricts to Dz — Df =, and the diagram

commutes. The composition rule of Lemma 6.3 translates as
Azjz 0 Az jzn = Azjzn forany 2" CE CECTI
and the projection formula of Lemma 6.4 translates as
Azjz 02z ()f') = fAz/=(f") for any f € Djrz and f' € D=

Remark 15.2. The map Az = corresponds to a push-forward in the geometric
context, see | , Diagram (8.3)].

Lemma 15.3. Within Qw/w., we have Drzx1,z C Sw/w.. So the right multi-
plication by x1/z induces a map Dr= — Sw,w.. Consequently, it defines a map
Stwywe = Drz, frranzef.

Proof. By Lemma 11.3 we know that {X7 },,cw= is a basis of Dpz, so it suffices
to show that XIwaH/E € Sw/w=. We have

XIEwIH/E = Z ( Z ai)(,uv)(sﬂxn/g = Z ( Z U(IH/E)af,uv)éﬂ = Z dﬁ,uéa,

ueW= veWsg ueW= veWsg u€EWE

which belongs to Sy w. by Lemma 14.2. O

The geometric translation of the map S;V/WE — D¥ ¢ is the push-forward map
from the T-fixed points of G/Pz to G/Pz, see | , Diagram (8.1)].
Example 15.4. Note that in general xr;,zDrz= € Sw/w.. For example, let the
root datum be of type A5* and E = {az}, then o1z = T_a,T—a,—a,. Let w =
s951 € W=, then

_ 1 1 1 1
Xo1 = Toy Tay Oe — TagTaq+as 05y — Tag Tag 05, + TapTagtay 2717

Then X2511'H/E € SW/WE but xn/5X251 ¢ SW/WE



PUSH-PULL OPERATORS 35

One easily checks that the diagram on the left below is commutative, and it
restricts as the one on the right by Lemma 15.3.

T/’ T/’

Qwiw., — Qwyw., Drz —— Swyw.,
Ts?s’ OdE/E/T Tds/sl 'mEjE, OdE/E’T TdE/E/
IH/— IH/:
Qwyw= — Qw/w= Drz —— Swyws

By S-dualization, one obtains the commutative diagram

mH/E/. «

*
Dy < W/ Was

A/l id

Dj Sty w=

FE ojae
= T Ee

[ *

=

whose geometric interpretation in terms of push-forwards is given in | , Dia-
gram (8.3)]
Theorems 12.4 and 14.7 then immediately translate as:

Theorem 15.5. The pairing D}, x D, — D}y =~ S defined by sending (o,0") to
An(oo’) is non degenerate; { Brreo(zrife)}
s0 are {Ajgw(xnfe)}wew and {Y} fvew -
Theorem 15.6. The pairing D= x D}z — D =~ S defined by sending (o,0”)
to Any=(00’) is non degenerate; {AE(BISU(foE))}wewa and {(XIEH)*}UGWE are
dual bases and so are {AE(AIL?U(foe))}wewa and {(Ylf)*}vewg,

wew and {X] tvew are dual bases and

Proof. For any choice of {I,},cw=, we complete it into a Z-compatible family

{Iv}wew, then by Lemma 11.6 {(XF)*} and {(YE)’(}%WE are bases of
L

We prove the result for Y’s only (the proof for X’s is the same). We de-
compose pE((Y2)*) = X cw €ww Y], for some e, € S. By definition we have
pg((YE)*)(Yjw) = (YE)*(YIE). So if w € W=, then e, , = (YE)*(YIE) = 65;.

As in the proof of Theorem 14.7, but using the projection formula and the
composition rule of Lemma 15.1 with Theorem 15.6, we obtain

Anyz (YD) Az (Are (2nfe))) = AnyzAz (pE((Y]) ") Are (en fe))
= AH(( Z eu,vYIz)AI{;V(foe)) = 511551 U

ueW

vEWE
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