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RELATIVE EQUIVARIANT MOTIVES VERSUS MODULES

BAPTISTE CALMES, ALEXANDER NESHITOV, AND KIRILL ZAINOULLINE

ABSTRACT. The purpose of the present notes is to introduce a language relat-
ing various motivic categories of G-varieties (G is a semisimple linear algebraic
group over a field) and categories of certain Dg-modules, where D¢ is the
Hecke-type ring associated to G.
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1. INTRODUCTION

The theory of Chow motives is an important tool of study of algebraic varieties.
Motivic decompositions of Pfister quadric played an essential role in the proof of
the Milnor conjecture by Voevodsky, and the motivic decompositions of norm vari-
eties were used to prove the Bloch-Kato conjecture by Rost, Suslin and Voevodsky.
Another application to the theory of quadratic forms can be found in the works
of Vishik, Karpenko and Merkurjev. Let G be a semisimple algebraic group over
a base field k. Our primary objects of interest are projective homogeneous G-
varieties. Motivic decompositions of such varieties were intensively investigated in
the last two decades. The case of split varieties was established by Kock [25], who
showed that in this case the motive decomposes as a sum of Tate motives. The
results of Chernousov-Gille-Merkurjev [11] and Brosnan [5] give decompositions of
motives of isotropic homogeneous varieties into direct sums of motives of smaller
anisotropic varieties. Rost [39] established the motivic decomposition of a Pfis-
ter quadric as a sum of twisted copies of an indecomposable motive R called the
Rost motive. The case of Severi-Brauer varieties was studied by Karpenko in [24].

2010 Mathematics Subject Classification. 14F43, 14M15, 20C08, 14C15.
Key words and phrases. linear algebraic group, torsor, flag variety, equivariant oriented coho-
mology, motivic decomposition, Hecke algebra.


http://arxiv.org/abs/1609.06929v1

2 B. CALMES, A. NESHITOV, AND K. ZAINOULLINE

Motivic decompositions of generically split projective homogeneous varieties were
studied in [38].

In the present paper we consider the case of a versal inner form of a projective
homogeneous variety, i.e. a variety of the form FE/P where E is a versal (i.e. a
generic) torsor of a split semisimple group G and P is a parabolic subgroup (not
necessarily special). Note that the groups G and P are uniquely determined by
combinatorial data: the root system of G, the character lattice T of its split
maximal torus 7', and the subset subset of simple roots of G defining P.

The main aim of the present paper is to describe the motivic decompositions of
E/P in terms of these combinatorial data. We work in a bit more general situation
than the theory of Chow motives. Namely we consider an oriented cohomology
theory h in the sense of Levine-Morel [33] and the theory of h-motives. In the case
h = CH it coincides with the classical category of Chow motives.

It is convenient to use the notion of equivariant motives, which we introduce
in Section 2. The main result of the present paper 5.8 establishes a 1 — 1 corre-
spondence between the motivic decomposition of E/P and G-equivariant motivic
decomposition of the split variety G/ P. The corollary 4.3 provides an injection of
endomorphism ring of the G-equivariant motive of G/P into the endomorphism
ring of the Dp-module D7, p. In the case when P is special, this injection is an
isomorphism. Here Dy is the graded formal affine Demazure algebra introduced
in [22]. Note that Dp and D7 p allow a combinatorial description in terms of
character lattice and root datum of the group G.

Acknowledgements. This paper is based on the PhD thesis [35] of the second
author, where the case of a special parabolic subgroup was treated. The results
presented here generalize several results of the thesis to the case of an arbitrary par-
abolic subgroup. The first author acknowledges the support of the French Agence
Nationale de la Recherche (ANR) under reference ANR-12-BL01-0005. The second
author is grateful to the University of Ottawa and to the Ontario Trillium graduate
scholarship program for the support. The last author is grateful to the NSERC
Discovery Grant for the support.

2. RELATIVE EQUIVARIANT MOTIVES AND MODULES

In the present section we introduce categories of relative equivariant motives and
modules.

Fix a smooth group scheme G over a field k and its closed algebraic subgroup
H. Consider a category G-V ary, of smooth projective (left) G-varieties over k with
G-equivariant morphisms. Let h be a G-equivariant oriented cohomology theory on
G-Vary, in the sense of [21].

We define a category of relative equivariant correspondences G/H-Corrj with
respect to the inclusion H — G as follows. Its objects are from G-Vary and the
morphisms are defined by

Morgg-corr, (X,Y) =im (resG/H: ha(X xxY) — hy(X X Y)),

with the composition given by the usual correspondence product.

We define a category of relative equivariant motives G/H-Moty, as the pseudo-
abelian completion of G/H-Corry, i.e., objects are pairs (X, p), where X € G-Vary,
p is an idempotent in Endg /g-copr, (X) and morphisms preserve idempotents. We
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denote by [X] the class of a G-variety X in G/H-Mot;, and call it the relative
equivariant motive of X.

Example 2.1. If G = H is a trivial group and h = CH is the (equivariant) Chow
theory, we obtain the classical non-graded version of the category of Grothendieck’s
Chow motives over S (e.g. see [10]). If G = H is a split semi-simple linear algebraic
group over k, we obtain its G-equivariant version studied in [36] and [37].

We fix a smooth projective G-variety Z over k (call it a base object) and consider
the endomorphism ring

D¢, = Endaymnor, ([Z))-
Observe that D7, is a (non-commutative) algebra over a commutative ring

S¢/x =im (resG/H: hg(k) — hH(k))

z
G/H

ME,(X) = Morg m-nmot, ([X],[Z])  for all X € G-Vary.

Consider a full additive subcategory of left DZ ., -modules generated by modules

We denote such subcategory by G/H-Modyz and call it a category of relative equi-
variant modules over Z. Observe that MZ, ,(Z) = DZ,, as a left module over
itself.

The assignment [X] — M2

&, (X) defines a contravariant functor

gg/H: G/H-Mot, — G/H-Mody,
where

& Moraym o ([X], [Y]) — Hompz  (MZ,,(Y), Mg, (X))

is induced by composing with [X] — [Y].
Observe that the category G/H-M oty is anti-equivalent to itself via the trans-
position functor

7: Morgm-mot, ([X],[Y]) = Morg, o, ([Y], [X])

induced by the switch map X x, Y — Y x; X with 7(a 0 8) = 7(8) o 7(«).
In particular, it defines an involution 7 (anti-automorphism of order 2) on the
endomorphism ring DZ ;.

In the present paper we will deal with a case when G is a split semisimple linear
algebraic group over k, H = T is its maximal torus and Z is either pt = Spec (k)
or a variety of Borel subgroups G/B of G containing T

Observe that if Z = pt, then DY, = S, and G/T-Mod,, is a category of left
S r-modules with

Mz (X) =im (resg/r: ha(X) — hp(X)).

The functor §%,, respects the tensor products, the map f&, is the usual motivic
realization map and we have the following

Lemma 2.2. (¢f. [30]) If X and Y are G-equivariant cellular spaces over k, then
f&r is a Kiinneth isomorphism.
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In other words, the functor §%,, induces an anti-equivalence of categories if
restricted to a full subcategory of G/T-Moty, generated by G-equivariant cellular
spaces.

We will often omit the upper index pt, when dealing with the case Z = pt.

If Z = G/B, then

Dg;? =1im (resG/T: hg(G/B Xk G/B) — hT(G/B Xk G/B))

Since the restriction map is injective by [36, Lemma 4.5], we can identify Dg/7

with the convolution ring hg(G/B xs G/B) ~ hp(G/B) of [36, §4].
3. THE WEYL GROUP ACTION ON COHOMOLOGY

In this section we recall several facts concerning action of the Weyl group on
cohomology rings of various flag varieties and their products.

Let G be a split semi-simple linear algebraic group over a field k. We fix a
parabolic subgroup P, Borel subgroup B and a split maximal torus 7 so that
P > BDT. Let X be an arbitrary (left) G-variety. There is a natural (left) action
of W on hy(X). It can be either realized by pull-backs induced by a right action
of W on each step of the Borel construction

UxTX =Ux X/(u,x) ~ (ut,t 'z), teT
given by
(u,2)T - 0T = (uo, 0 '2)T, o€ Ng(T)
where U is taken to have a right G-action; or through the natural isomorphism
hy(X) ~ he(G/T x X) and a G-equivariant right action of W on the variety
G/T xj, X given by the formula (¢7,x) - 0T = (970, x).

Let Wp denote the Weyl group of the Levi-part of P. We identify the set of
T-fixed points of G/P with a finite constant scheme W/Wp with trivial T-action.
In the induced pullback hp(G/P) — hp(W/Wp) we identify hy(W/Wp) with the
ring of all set-theoretic maps Maps(W/Wp, hr(k)) (see [10])

b (W/Wp) = a(U x" W/Wp) = @uwpew/wphr (k) = Maps(W/Wp, hr(k)),
where the class of (u,zWp)T maps to aWp +— [uT].
Lemma 3.1. Consider the left W-action on Maps(W/Wp,hr(k)) given by
(w-f)(z) =w- flwtx), =€W/Wp, fecMaps(W/Wp,hr(k)).
Then the pullback map
hy(G/P) = hp(W/Wp) = Maps(W/Wp,hr(k)) is W-equivariant.
Proof. Recall that the action of W on U xT G/P is given by (u,gP)T - oT =

(uo,0~tgP)T for any U in the Borel construction. Restricted to U xT W/Wp the
action of w = oT gives a map

UxTW/Wp = UxTW/Wp, (u,aWp)T = (uo, s aWp)T.
So its pullback defines an endomorphism of hp(W/Wp) = Maps(W/Wp,hr(k))
given by f+ w- f, where w- f: x — wf(w™tz). O

Remark 3.2. By the very definition, the W-action on Maps(W/Wp, hr(k)) and,
hence, its restriction on hr(G/P) coincides with the ®-action of W on S§;, (resp.
on D% p) of the next section.
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Definition 3.3. We call a parabolic subgroup P of G to be h-special, if the natural
map hp(k) — hr(k)VP is surjective.

Example 3.4. Recall that a group is called special if all its principal bundles
are locally trivial in Zariski topology. For a special parabolic subgroup P and
hp(—) = CH(—;R) there is an isomorphism ¢: CHp(k;R) = CHr(k;R)"VF by
[15] or [16, Prop. 6], hence, any special P is CH(—;R)-special.

Observe that there are exist non special P for which ¢ is either surjective (e.g.
the Levi part of P is PGLs) or not (e.g. for Spinia, see [18]). Observe also that the
surjectivity of ¢ depends on the coefficient ring R as in general C Hr(k; R)WV? #
CHr(k)"? @ R.

Lemma 3.5. If P is h-special, then the pull-back hr(G/P)YW — hpr(W/Wp)W =
hr(pt)"? is an isomorphism. In particular, the restriction hg(G/P) — hr(G/P)
18 surjective.

Proof. The composition of restriction homomorphism hg(G/P) — hp(G/P) with
the isomorphism hr(G/P) ~ he(G/T x G/P) is a pullback induced by projection
on the second factor. So the image is contained in hg(G/T x G/P)W.

Recall that T-fixed points of G/P are given by the natural embedding W/Wp —
G/P. Here we consider W/Wp as a finite constant scheme with trivial T-action.
Take any U in the Borel construction. There is a commutative diagram

Ux¢G/P<~————UxTG/P

S

U/P L UxTwW/wp

The leftmost arrow is a scheme isomorphism given by uP — (u, P), the upper
horizontal arrow is the projection, and the rightmost arrow arises from the fixed-
point embedding W/Wp — G/P. Then the bottom arrow f is given by

f: (u,wWp)T — uo - P where 0 € Ng(T') such that cTWp = wWp.

Since the diagram is compatible with the embedding U = U; — U,41 in the Borel
construction, it induces the commutative diagram of equivariant pullbacks:

hg(G/P) hp(G/P)
hp(k) " (W/Wr)
By lemma 3.1 the rightmost map is W-equivariant, so we have a diagram
ha(G/P) hr(G/P)Y (%)
-
hp(k) hr (W/Wp)W

Recall that hp(W/Wp) = Maps(W/Wp,hr(k)) and by definition of W-action on
this set we have

Maps(W/Wp, hT(kJ))W = MapsW(W/Wp, hT(k})) = hT(k)WP.
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By the construction of f we see that the map f*: hp(k) — Maps(W/Wp,hr(k))
is given by z — fs, fo(w) = w - 7*(x) where 7*: hp(k) — hp(k) is the restriction
map. Thus, via the identification

f*:hp(k) = Maps(W/Wp, by (k)" = by (k)"

the map f* is given by the usual restriction map hp(k) — hp(k)"? which is
surjective since P is h-special. The fixed-point pullback hr(G/P) — hr(W/Wp)

is injective by [10, Theorem 8.11]. Thus in the diagram (x) the rightmost arrow is
injective and the bottom arrow is surjective, then the rightmost arrow is surjective
as well. O

For any p € hg(X x X), set hg(X,p) = p(hg(X)) to be the image of the
realization map of p.

Lemma 3.6. Suppose X is a G-variety such that hg(X) — hp (X)W is surjective.
Then for any idempotent p € ha(X x X) the map

ha(X, p) = hp(X, p)V is surjective
where p is the image of p in hy(X x X).

Proof. We have a direct sum decomposition hg(X) = hg(X, p) ® he(X, id — p).
Let p denote the image of p in hp(X x X). Then the decomposition hp(X) =
hr(X, p) @ hr(X,id — p) is W-equivariant. So the surjection hg(X) — hp (X)W for
X = G/P is given by a diagonal matrix:

ha(X, p)®ha(X,id—p) = (br(X, p)Shr(X,id—p))" = hr (X, p)" ®hr(X, id—p)"

and each of the maps hg(X, p) — hr (X, p)V and hg(X,id — p) — hr(X,id — p)V
is surjective. ([l

Definition 3.7. We say that two parabolic subgroups P and P’ are h-degenerate
with respect to each other if for any w € Wp\W/Wp, the parabolic subgroup
P, = R,P-(PNYP’) is h-special. We say that a family of parabolic subgroups
is h-degenerate, if any two of them are h-degenerate with respect to each other.
Observe that P is h-degenerate with respect to itself (P = P’) implies that P is
h-special.

Example 3.8. Any family of special parabolic subgroups is C'H(—; R)-degenerate.

Consider a full additive subcategory Mots, (resp. its subcategory Motg,) of
G /T-M oty generated by relative equivariant motives of projective homogeneous G-
varieties G/P where P runs through all h-special parabolic subgroups of G (resp.
through a given h-degenerate family of parabolic subgroups). Observe that the
difference between Mot,, and Motg, is that by [12] the subcategory Motg, is
closed under the tensor product.

Combining Lemma 3.5 and Lemma 3.6 we obtain

Corollary 3.9. For any motive M in Mot,, and, hence, in Motq, we have

hg(M) — hp(M)W is surjective.
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4. MOTIVES VS. MODULES

Let Modq, (resp. Modg,) denote a full additive subcategory of G/B-Modg,r
generated by left DG/7 = hy(G/B)-modules M¢/ s (G/P) = hr(G/P) for all (resp.
for a given h-degenerate family of) parabolic subgroups. We claim that

Theorem 4.1. The functor gg;? is faithful if restricted to Motpe, — Modpar.
Moreover, it induces an equivalence if restricted to Moty — Modgg.

Proof. Let X = G/P and Y = G/P’ for some parabolic subgroups P and P’ of G.
By definition, M&/7 (X) = Morgr-mot, ([X], [G/B]) =

=im (resG/T: hg(X Xk G/B) — hT(X Xk G/B))
Since X xj, G/B is a G-equivariant cellular space over G/B via the filtration in-
troduced in [12], the map resg/r is injective. Indeed, it is a map of free mod-

ules induced by the injective map on coefficients hg(G/B) — hp(G/B). Hence,
MS/7(X) =hg(X xi G/B). Therefore, we have

HomDG/B (MG/B(Y) MG/B(X)) = Hom(hT(G/B)yo) (hT(Y), hT(X))

G/T G/T
which is a W-invariant submodule of
HomDpr/ (M?: (Y, M;ZT(X)) = HOth(pt) (hT(X), hT(Y)) .

T/T

Consider a commutative diagram of induced maps

&l
(1) Morgr-not, (X1, [Y]) —=H N (M2 (Y), M&/7 (X))
b j

Mory p-mor, ((X], [Y]) —— HomD?Ft/T (MZP (YY), M7+ (X))

Observe that the leftmost arrow is injective by definition. Since Mot is generated
by motives of T-equivariant cellular spaces, by Lemma 2.2 the realization map f7'
restricted to Moty is an isomorphism by the Kiinneth theorem. Therefore, the
map f&/; is injective and the functor is faithful.

To prove the equivalence, observe that by Corollary 3.9 Morg r_pot, ([X], [Y])
can be identified with W-invariants Mory r e, ([X], [Y))V for all [X],[Y] €
Motg,. Hence, the map fS //f is a restriction to W-invariants of the isomorphism
J2)z, 80 it is an isomorphism. (I

We now identify the category Modg, with the category of certain modules over
a Hecke-type algebra. We follow notation of [8], [9] and [10]. Let R = h(pt)
and S = hp(pt) be coeflicient rings and let Sy = S#R[W] be a twisted group
algebra of the Weyl group W. By [7] S can be identified with the formal group
algebra R[[T*]]r corresponding to the formal group law F' of the theory h. Let
Q be the localization of S = R[[T*]]r at all variables z, corresponding to roots
and let Qw = Q#R[W] denote the respective localized twisted group algebra.
The subalgebra of Qy generated by the Demazure elements X, = — — —(5 and
multiplications by S is called the formal affine Demazure algebm and is denoted
by Dr. We define Dr p to be the image of D under p: Qw — Qw/w,, where
Quw/w, is a free Q-module on the basis given by cosets W/Wp.
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The main result of [10] says that the cohomology ring
hr(G/P) = ha(G/T % G/P)

can be identified with the dual algebra D7, p = Homs(Dp,p,S). Moreover, by [36,
§5] the convolution algebra hg(G/B xj G/B) can be identified with the formal
affine Demazure algebra Dp.

Consider the ®-action of Qw on Qi = Homq(Qw, Q) introduced in [30] as

q6w © pfy = qu(p) fuwo-

By [30] this action restricts to the action of D on D, p and via the mentioned iden-

tifications it coincides with an action of the convolution algebra D% = h (G /B X,
G/B) on M7 (G/P) = ha(G/P x; G/B). Combining these identifications, we
obtain the following

Theorem 4.2. The category Moty is equivalent to a subcategory generated by
D p-modules D, p for a given h-degenerate family of parabolic subgroups.

As an immediate consequence of Theorems 4.1 and 4.2 we obtain the following
key

Corollary 4.3. For any parabolic subgroup P there is an inclusion
Endgr-pot, ([G/P]) = Endp, (D% p)-

Moreover, if P is h-degenerate with respect to itself, i.e., Py, is h-special for all
w € Wp\W/Wp, then the inclusion is an isomorphism.

Remark 4.4. It follows from the corollary, from the definition of D} p, of the

®-action and of the e-action of [9] that for a special parabolic subgroup P
hg(G/P x G/P) ~hp(G/P) ~"Vr(D%)W?

where the left Wp acts via ‘@’ and the right Wp acts via ‘e’.

5. NILPOTENCY FOR EQUIVARIANT ORIENTED THEORIES

In the present section we extend the Nilpotency Theorem of [16] to algebraic
cobordism ) of Levine-Morel and apply it to identify the direct sum decomposi-
tions of [G/P] in G/G-Moty, and in G/T-Moty,. We follow closely arguments and
notation of [16].

Let Schy denote the category of reduced schemes of finite type over a field and
let Smy, denote its subcategory of smooth schemes over k. Let Q(—) denote the
algebraic cobordism functor of Levine-Morel [33].

Lemma 5.1. Let X € Schy and let E — X be a rank d vector bundle with a zero
section z: X — E. Then the following diagram commutes

ca(¢*EQO(1 —
Q.(P(E e 1) — 20O, o J((E 1)

| -

0.(E) £ Q. _a(X)
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Proof. There is a global section of the sheaf ¢*E ® O(1) = Hom(O(-1),¢*E),
given by an element s € Hom(O(—1),¢*E) that is the composition of the natural
embedding and projection

O(-1)—=q¢"(E®l) = ¢ E.

The zero set Z(s) consists of points of P(E @ 1) that correspond to additional lines
1in E, @1, over every point of x € X. So X is the zero subscheme of s with regular
embedding 5: X — P(FE @ 1) given by

X (Ee1)\ (Z(E),0) = P(Ea1).

By [33, Lemma 6.6.7], the operator ¢4(¢*E ® O(1))N— on Q(P(E @ 1)) is given by
5.5*. Then the right-down pass is given by

.55 =5 ULPE1L) — UE) S Q_a(X). 0

Lemma 5.2. Let X € Schy and E — X be a vector bundle of rank d. Then for
any point x € X there is an open subscheme U of X with x € U, and a projective
morphism p: X' — X such that

e p*E has a filtration by subbundles with linear subsequent quotients.
e There is an open subset U’ such that p: U' — U is an isomorphism.

Proof. Consider the projection p: FI(E) — X where FI(FE) is the variety of com-
plete flags of the vector bundle F over X. Then p*E has a filtration by tautological
sub-bundles. For any z € X there exists a neighborhood U of x such that the
bundle E trivializes, so FI(E)|y ~ FI x U and there is a section s: U — p~*(U).
Take X’ to be the closure of s(U) in FI(E). Restriction p: X’ — X satisfies the
desired properties. O

Lemma 5.3. Let X,Y € Schy and p: X — Y be a projective birational morphism.
Then p: Qu(X) = Qu(Y) is surjective.

Proof. First, consider the case when X and Y are smooth. Then for any o € Q.. (Y)
we have p.(p*a) = - p«(1x) and by the degree formula p.(1x) = 1y + a where
a € L-Q>9(Y), hence a is nilpotent in the ring Q*(Y'), therefore p.(1x) is invertible.

Now consider the general case p: X — Y with X,Y € Schy. Take an ele-
ment 8 € Q.(Y). Since algebraic cobordism is detected by smooth schemes by [33,
Lemma 2.4.15], there is a smooth scheme Y’ and projective morphism ¢: Y/ — Y
and an element 5 € Q.(Y’) such that ¢.(8") = . Let X’ = X xy Y’. Then
the morphism P: X’ — Y is projective birational. Take X" to be a resolution of
singularities of X'

X F X! P y!

ol

X r.oy
Then F: X" — X is projective birational. Thus X”,Y’ € Smj and the map
P o F is projective birational. Then by the first case there is o/ € Q.(X") such
that P.F. = ’. Then 8 = ¢.3' = ¢.PiFi (&) = p.Q.Fy where Q: X' — X is the
projection. ([l

Definition 5.4. Let X € Schy and Z be a closed subset of X. We say that an
element o € Q. (X) is supported on Z if « lies in the image Q.(Z) — Q. (X).
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Lemma 5.5. Let X, X' € Schy, f: X' — X be a smooth morphism of schemes,
E be a vector bundle of rank d on X and E' = f*E and Z;, i = 1...m be irreducible
closed subsets of X and Z! = f~Y(Z;).

Then there are closed subsets Z; — Z; of codimension d such that for any o €
Q. (X') supported on Z! the element ¢4(E') N o is supported on f~(Z;).

Proof. First, consider the case when E is a line bundle. We have £ = E; @ Ey
for some very ample line bundles F1, E>. Then by [33, Lemma 2.3.10] we have
¢1(E) =¢1(Ey) —p ¢1(E2). By [33, Lemma 6.6.7] the operator ¢;(E7) N — is given
by s.s*, where s: f~1(D;) — X’ and D; in X is the divisor of the very ample line
bundle E;. Thus, ¢;(E;) N a is supported on f~(Z; N Dy). Similarly, ¢1(E5) Na
is supported on f~1(Z; N Dy), where Dy is a divisor of Ey. Since Ej, Ey are very
ample, we may choose D; and D5 to intersect each Z; by codimension 1, thus
G1(E}) —p & (E)) N (a) is supported on some f~1(Z;) of codimension 1 for each i.

Consider the general case. For each i = 1..m there is a projective map p;: Y; = X
given by Lemma 5.2 such that an open subset of Y; is isomorphic to some open
neighbourhood of the generic point of Z;. Let W; = (p; (U N Z;)) be the proper
transform of Z;. Then W; — Z; is projective birational. Let p}: Y/ — X’ denote
the pullback of p; along f and W/ = f=1(W;). By Lemma 5.3 for any a € Q.(X’)
supported on Z! we may found a preimage o € Q.(Y/) supported on W/. Now
by Whitney formula [33, Def. 1.1.2] we have ¢g((p,)*E') N — = H;l:l c1(E7), where
E; are linear subsequent quotients of Lemma 5.2. Now, applying inductively the

case d = 1 for o/ we can find the subset Wi of codime@ion d in W;, such that
ca((ph)*E"Na = (H?:l ¢1(E;j))Na’ is supported on f~1(W;), then its pushforward

is equal to ¢4(E') N« and is supported on f~1(Z;) = f~(p(W})). O

Lemma 5.6. (¢f. [16, Lemma 6.3]) Let V. — B < T be closed embeddings with
regular f and smooth quasi-projective B. Let e: W — B be a smooth morphism.
Consider two Cartesian diagrams:

Wy e w <™ W, and T—>B
I S 1
vt . B9 7T Ty

Then there exists a closed embedding h: Z — V such that codimh > codim g and
im(fy; 0 gw) € im(hw) inside Q. (V).

Proof. Consider the Cartesian square

WTg_W>W
fwa fWT
Wz 2 Wy

By [33, Proposition 6.6.3] fi;; © gw« = gw« © fiy; where the refined pullback f};, is
given by the composition [33, 6.6.2]

0L (Wr) = Qu(Cw) = Qu(Nw) = Qu_a(Wg)
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where Cy is the normal cone of fw and Ny is the the normal bundle pullback
gy (N, ) and d is the codimension of f.

Let N be the pullback of the normal bundle §*(Ny) and ¢: P(N & 1) — T be
the projection and E denote the vector bundle ¢* N ® O(1). Consider the closed
subscheme P(C & 1) inside P(N @ 1) where C is the normal cone of the map f:T—
T. Applying Lemma 5.5 to the vector bundle E and irreducble components of
P(C & 1) we get a closed subset Z’ of codimension at least d in P(C' & 1) such
that for every cobordism class « supported on P(Cy @ 1) the class x N¢q(e*E) is
supported on ¢~(Z’). Thus in view of Lemma 5.1 the image of the composition
Q.(Cw) = Qu(Nw) = Qu_q(Wz) is supported on e~1(Z) where Z = ¢(Z’). So
h: Z — V is the desired embedding. (I

Let h be an oriented cohomology theory that is generically constant and satisfies
the localization property, so the canonical map from algebraic cobordism Q(X) ®r,
h(k) — h(X) is surjective for every X € Smy.

Lemma 5.7. Let m:' Y — X be a smooth morphism and let X be a smooth quasi-
projective variety. Let i1: Z1 — X and io: Zy — X be closed embeddings.
Then there exists a closed embedding i3: Zs — X such that

codim Z3 > codim Z; + codim Zy and im(i}) - im(i5). C im(i5)« in h(Y),

where i': Yz, =Y, j =1,2,3 is obtained from the respective Cartesian square.

Proof. The diagonal embedding Y — Y x Y factors as Y Ly XxY Wy y. By
Lemma 5.6 appliedto B=X x X, V=X, f: Ax, T=Z1 X Zoand W =Y xY
we obtain a closed embedding h: Z — X such that

codim Z > codim Z; + codim Z3 and im(fy o (i} X i5)s) C im(hw ).

There is the Cartesian square

Y —2 v xyY

YZ%(YXXY)Z

According to [33, Proposition 6.6.3] we have ¢* o hyy. = h’, o0 ¢',. So for Q we have
im(i))s - im(i%)s Cim A o (17 x %)« Cim(h).

Finally, the natural map Q.(—) ®g, h(k) — h(—) is surjective and compatible with
push-frowards and intersection product, so we can replace {2 by h. O

Let E be a versal G-torsor over k, and let £ C V be the ambient G-representation.
Consider the twisted flag E/P and the composite of P?-equivariant maps

EXESExG—-VxG—aG,

where action of P? on the E x E is given by (e1, e2) - (p1,p2) = (e1p1, e2p2) and on
G is given by g - (p1,p2) = py *gpz. Its induced pullback gives a surjective map

v:he(G/P x G/P) = hp2(G) — hp:(E x E) =h(E/P x E/P).
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Proposition 5.8. The map
Vi Endeyc-mot, (IG/P]) — Endusor, ([E/P)).

lifts idempotents and isomorphisms strictly. Hence, the direct sum decompositions
of the usual h-motive [E/P)] are in 1-1 correspondence with the direct sum decom-
positions of [G/P] in the equivariant motiwic category G/G-M oty,.

Proof. Consider a sequence U; from the Borel construction for a G-equivariant
theory hg. Then h%(G) = limh((U? x G)/P?) and the morphism v is a limit of
pullbacks

vi: h((UExG)/P? S h((UxV xQ)/P?) — h((UxExG)/P?) 5 n((U?xExE)/P?)

By the localization sequence each element in the kernel of ~; lies in the image of
h((U? x Z x G)/P?), where Z is a closed complement of E in V.
Consider the maps
Pjg: (Gn X Uin+1)/Pn+l — (G X Uf)/P2

which descend from the standard projections p; ;: U — U?

i 7, where the maps
m;, 1 G™ — G are defined on points by

T (g1, gn) =g) g1 for 1< <n, 2<j<n+1and go = 1.
Then the n-fold convolution product on h((U? x G)/P?) is given by

K3
n
21k = (prn)« ([ 25540 (@)
j=1

For every j there is the Cartesian square

(Z %3 G x5, UMY [P+l Lo (V xy G ¢, UL /P

(Z XkGXka)/PQ (V XkGXka)/P2

Thus, for every x € h(V x; G x; U?)/P?) supported on (Z xx G x; U?)/P? the
element p7 ;. (z) is supported on (Z xj G™ x UMt/ Pt Then by Lemma 5.7
applied to

f=piz: (Vxu G g U P = (V % G x UF) /P

we get that [];"; im(j.) = 0, hence, 2*" = 0 for n > dim(V')/ codim(Z). Thus v is
a limit of surjective maps with nilpotent kernels. Moreover, the inclusion U; — U; 41
induce a surjective homomorphism ker(;+1) — ker(;) by [35, Proposition 6.2.1],
thus v lifts idempotents and isomorphisms strictly by [35, Lemma 4.3.4]. ([

Corollary 5.9. There is a 1-1 correspondence between direct sum decompositions
of [G/P] in G/G-Moty, and in G/T-Moty,.

Proof. In the commutative diagram
he(G/P xj, G/P) ——=h(E/P x, E/P)

hT(G/P Xk G/P) %h(G/P Xk G/P)
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the map ¢ has nilpotent kernel by the Rost Nilpotence theorem for h (here one uses
the Rost Nilpotence for Chow groups [11] and extends it to an arbitrary h using
the Vishik-Yagita [15] correspondence between - and Chow motives). Hence, the
restriction res is a limit of surjective maps with nilpotent kernels by the lemma. [

Remark 5.10. It would be interesting to have a direct proof (without using RN
of [11]) of the fact that the map res has nilpotent kernel.

6. THE ENDOMORPHISMS OF D7, p

In the present section we study idempotents in the endomorphism ring Endp . (D% p)
in the Chow group case.

By definition (following [9]) Quw/w,, is the free Q-module spanned by d4, where
w is the class of w in W/Wp. By [9, Lemma 11.2] p(2X,) = 0 for any z if s, € Wp.
By [9, Lemma 11.3] if {I,,} is Wp-compatible, then p(Xy,) = 0, if w is not in W¥
(the set of minimal coset representatives) and, moreover, p(Xr,, ), w € W¥ form
an S-basis of D p.

The map p induces an injection p*: D} p — D7 with the image being the
subring of Wp-invariants (with respect to the Hecke action ). By [0, Thm 14.3]
there is an S-basis of D p given by the classes

bw="E1,([pt]) =Yp o (X1 ept]), weW”.

We now restrict to the case of Chow groups. By [30, Example 4.8] we have:
X, @6, - Eojo if l(sjv? > I(v) and sju € WP
0 otherwise

In other words, the action by X;’s corresponds to the weak Bruhat order on WF.
An endomorphism ¢ € Endg (D} p) is uniquely determined by its values on basis
elements &, w € WP, That is ¢(&,) = D, @p,wés, Where (ay.,) is the respective
matrix of coefficients from S. Since D is generated by X;’s and elements of S, ¢
is a homomorphism of Dp-modules if it satisfies

X; © ¢(fw) = ¢(X; ® &) for all j and w € WP

So we have for v, w € WF

Xj ® Z av,wfv = Z(Sj(av,w)Xj + Aj(av,w» © fv

v

= Z 85(av,w)és;v + Z Aj(apw)éo
s;VEWPE [ 1(s5v)>1(v) v
= Z S5 (GSjv’,w)gv’ + Z Aj (av,w)gv
v EWP, I(s;v)<l(v") v
and
Yoy Gus;wbe i l(s;w) > [(w) and s;w € wF,
0 otherwise.

¢(Xj ®§w) = {

Combining, we get the following recurrent formulas:
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Lemma 6.1. If(sjw) > l(w) and s;w € WP, then
a _ ) silasow) + Aj(avw) if Us;v) < U(v),
Dot Aj(ayw) otherwise.
If l(sjv) < l(v), then (observe that s;A; = A, for Chow groups)
i (a,s,w) — Djlavw) if l(sjw) > 1(w) and s;w € WE,
Asjv,w =
T A otherwise.

Corollary 6.2. The Dp-module map ¢ is uniquely determined by its value on
& = [pt], i.e. by coefficients a, = a1, v € W, such that for all s; € Wp

A (ay) = {—asjv if U(sjv) <1(v)

o otherwise

Proof. By the recurrent formulas it follows immediately that ¢ is uniquely deter-
mined by its value on &. Comparing X; © ¢(&1) and ¢(X; © &) we obtain the
desired expression for Aj(ay). O

Assume that an endomorphism ¢ has degree 0, i.e., preserves degrees. Then each
ay,w 1S a polynomial of degree I(v) — I(w). So the matrix (a, ) is lower triangular.

Example 6.3. We have the following formulas for coefficients of lower degree:
Degree 0: a1 = a1 € R. Let si,s; € WP ie., Sk,s; ¢ Wp. Then (setting
v=s, and w=1)
a _Ja + Aj(ask) if Sj = Sk
Pt Aj(as,) if 55 # si.
Let s;s5, sps1 € WP, s; # s; and s # s; (in particular, s;, s; ¢ Wp). Then
Sk (aS]‘,Sl) + Ak (asij,Sl) if Sk = Si
Us;sjosest = § Sk(Gs;,s) + Drlas,s;,5,)  if sp =55 and s;s5 = 558;
Ak (as;s;,5,) otherwise
Degree 1: Let ssi,s; € WP k#1, ie., si,8; ¢ Wp and sis; # sisi if s, € Wp.

Then (setting v = sis; and w = 1)

. - $i(Qs;sps1,8;) + Djlas,s,) if l(sjsps) =1
SKS1,8; Aj(as,s) otherwise.

Assume that ¢ is an idempotent (in particular, it has degree 0) so that (a,,.) is
an idempotent matrix. By definition, it satisfies ¢(o([pt])) = &([pt]) which leads to

Zava = ¢(Z au&u) = Z augb(&ﬂ) = Zauav,ugv

that is
Z AyOyy = Ay, U, U € wr.
u, U(u)<l(v)

Example 6.4. In degree 0 it gives a? = a;. In degree 1 it gives for each s; ¢ Wp

2a1a5, + Z as;Aj(as,) = as,.
s;¢Wp
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7. APPLICATIONS TO CHOW MOTIVES

The purpose of the present section is to demonstrate how the techniques of Hecke-
type (Demazure/divided-difference) operators can be applied to show irreducibility
of certain D p-modules D}, p and, hence, of motives [E//P]. We restrict to the case
of Chow groups only, i.e. R =7Z and F is an additive formal group law.

Projective spaces. Let G = PGL,,+1 be adjoint group of type A, and let P be of
type An—1, i.e., G/P =P" is a projective space. By definition W = (s1,...,s,) is
the symmetric group on n + 1 elements, Wp = (s, 83, ..., 8,) is its subgroup and
the set of minimal left coset representatives is W¥ = {1, 81,9281, -, 8n8n—1..51}
The algebra D is then the usual nil affine Hecke algebra over the polynomial ring
S =Zla, ..., ay] in simple roots. Consider an idempotent ¢ € Endg)F (D% p) and
the associated matrix (ay ).

For simplicity, set c;j := Gs;..s1,5;..515 Ci,0 = Gs;..51,1, C0,j = Q1,s;..5, TOT 4,5 > 1
and ¢o0 = a1,1. S0 (¢;,5) = (av,w) is a lower-triangular idempotent (n+1) x (n+1)-
matrix with polynomial coefficients of degrees degec; ; =17 — j.

The recurrent formulas of Lemma 6.1 turn into:

cii = 8i(Ci—1,i-1) + Ailciio1) ifi>1, cj=A0(cij-1) ifi#j, 7 >1,
and ¢ 0 = (—1)"*iAi+17,,7n(cn70) forn>i>1.
So if i > j > 1 (under the diagonal), we obtain
iy =24y a(cio) = (=1)""A; 1iv1.n(cno)
and on the diagonal we get
cii=si(cic1i-1) + (=1)"""As 1it1..n(Cno)-

In other words, we have the following diagram of operators

€0,0 ]
51
Ap A
Ci,0 —=C1,1
e sg
_AQT
Aq Ay A
C2.0 C2.1 C22
Cn—2,0 Cn—2,n—2
Sn—1
Aan
Aq Anfl A
Cn—1,0 co Cn—1,n—1
- Sn
—AnT
Aq Apn—1 Ap N

) )
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Using the relations for the Demazure elements and the fact that Aj(c,0) =0
for all j # 1,n (Corollary 6.2) we get

Ao i1, 141, n(cno) =0, forall k+#i.

So ¢;i—1 € SWi, where W; is generated by all simple reflections except the i-th one.
Since c¢;;—1 has degree 1, we can express it as ¢;;—1 = bioy + ... + by, b; € Z.
Then ¢; ;-1 € SW: is equivalent to

by = 2b1,b3 = 3by,...,b; =iby = (n—|— 1— l)bn, ceuyby_o=3b,, b1 = 2b,.
Assume n 4+ 1 = p” for some prime p and r > 1. Then
Pl Ai(cii—1) =2b; —bi—1 — bit1 = b1 + by.

Since ¢ is an idempotent, all diagonal elements ¢; ; are idempotent as well, i.e.,
¢i; = 0,1. The recurrent formulas and the fact that p | A;(¢;;—1) then imply that
Ci;i = Ci—1,—1 for all 7, i.e. that there are no nontrivial idempotents. So we obtain

Proposition 7.1. Let G be adjoint of type A,, where n = p" — 1 for some r. Let
P be the maximal parabolic subgroup generated by all simple reflections exept the
very first one. Let Dp be a formal affine Demazure algebra corresponding to the
additive formal group law F over Z (or Z/pZ) and to the root lattice of G.

Then the D gp-module D})P s irreducible.

Remark 7.2. In view of Proposition 5.8, Corollaries 5.9 and 4.3, this fact is equiva-
lent (and, indeed, provides a different proof) to the celebrated theorem by Karpenko
on indecomposability of the motive of a Severi-Brauer variety of a generic algebra.

The Klein quadric. Let G be a group of type Az with T* = (ay, as, a3, ws2) and
let P be of type A1 x A, ie., G/P = Gr(2,4) is a 4-dimensional split smooth
projective quadric. By definition, the Weyl group W = (s1, s2, s3), Wp = (s1, s3)
and the set of minimal coset representatives W is given by the Hasse diagram

s9- 81
1 59 5182

51+ EDR

53852 518352 5285185352

Consider an idempotent ¢ € Endg)p (D% p) and the associated matrix (ay, ).
For simplicity, set aijr.. = as;s;s,.. and ag = a1. By the recurrent formulas of
Lemma 6.1 and of Corollary 6.2 we obtain:

as2 = ag + Az 1 3(a132),
a12,12 = @22 — A1 23(a132) and ass 32 = as2 — Az 21(a132),
as2,12 = —A1,2,1(a132) and a2 32 = —A3,2,3(G132),
ai32,132 = a12,12 + Az3(A12 — Ao j1)(a132) = azz 32 + A1(As2 — Az 3)(a132),

a2132,2132 = @132,132 + A2,1,3,2(02132) + A2,1,382(&132)-
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which can be also expressed as a diagram of operators (here we denote a;jk.. imn

lmn..
by a’z]k )
ap ...
Ay e 4
as = g2
S
S1 -._3
YN . -
—A 3
A A
T, 21\§ 12 12
ai12 as2 a2 a3z 12 32
\Az"-._ AI’/ s3
hN ' Az q 5
P 32 32 -
—Ag A, AS\jL? aiz azz
Q BN
Ay 2 Aq Az 132
@132 a132 i3 a132
. x{ A,
. S - 82
a3
Az 2 A 12 Az 132 B2 9139
2132 2132 2132 2132 2132
Az Aq
32
a2132

Lemma 7.3. For any polynomial g of degree 3 we have
Az21(9) = A123(9) = Az23(9) = A121(9) and
A27173(g) = A37172(g) = A17372(g) =0 mod 2.

Proof. As for the first chain of congruences, since Ai(g) = As(g) = 0 for any
polynomial g which does not contain «as, and the computations are symmetric with
respect to a1 and «ag, it is enough to check it only on monomials a%al and asworg.

Direct computations modulo 2 then give
Azo1(adar) = Aza(al) = Az(as) = 1, and
A172_’3(O[§Oél) Aqo(aqas) = Ao+ a2 +a3) = 1;
Az o1 (cowaar) = Az o(waar) = Ag(ag + a2 —we) =1, and
( 1.

Ay o 3(@owaar) = Aq2(wean) = Ar(ag + e —ws) =

Similarly, we get Az 23(9) = A1,2.1(9) and Az 23(9) = A123(9).

As for the second, it is enough to verify that Aj 3(h) = 0 for any quadratic h
and Ag 1 3(a3) = 0. Indeed, for quadratic h it reduces to A1 3(a3) = Aq(az) =0
and

Agﬂlyg(ag) = Agﬂl(ag “+ agai3 + Oég) = AQ(O&l + 043) =0. [l

If ¢ is an idempotent, then all the diagonal entires of the matrix (a, ) are idem-
ai2,12  @32,12
a12,32 132,32
matrix. Since ai232 = as212, the matrix M modulo 2 is either a trivial matrix or
an identity, which implies that

potents as well. In particular, the matrix M = < is an idempotent

a12,32 = ag2,12 = A1 2,3(a132) = Az 21(a132) =0 mod 2.
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From the recurrent formulas for the diagonal entries we obtain
ap = a2 = a12,12 = a32,32 = A132,132 = A2132,2132 = 0,1 mod 2.

So, we have proven the following

Proposition 7.4. Let G be a group of type Az and let P be the mazximal parabolic
subgroup generated by the first and the third simple reflections. Let D be a formal
affine Demazure algebra corresponding to the additive formal group law F over Z
(or even Z/27.) and to the lattice T* = (a1, a2, a3, wa) (observe that T* modulo the
root lattice is Z./27).

Then the D gp-module D})P s irreducible.

Remark 7.5. Again in view of 5.8, 5.9 and 4.3, this fact implies indecomposability
of the motive of a generic 4-dimensional quadric.

The Dy-case. Let G be of type Dy and let P be of type As, ie., G/P is a 6-
dimensional smooth projective quadric. By definition, the Weyl group W = (s1, s2, 83, 84),
Wp = (s2, 83, 84) and the set of minimal coset representatives WPF is given by the
Hasse diagram

s1° s2° S4-
1 s1 s281 S48281

s3- s3-
sq4- sg- s1-

$38251 > 54835251 52545835251 515254535251

By the recurrent formulas of Lemma 6.1 and of Corollary 6.2 we obtain (as before
we set Gijr. = Gs,s;s,.. and ap = ay):

a1l = ap+ A1,2,3,4,2(a24321)7
a21,21 a1,1 — A2,1,3,4,2(024321)7
321,321 = 21,21 + A3,2,1,4,2(@4321) and Q421,421 = Q21,21 + A4,2,1,3,2(az4321),
321,421 = A4,2,1,4,2(%4?;21) and a421,321 = A3,2,1,3,2(6124321)7
(4321,4321 = G421,421 T+ A3,2,1,4,2(6124321) - A3,4,2,1,2(6124321)
= a321,321 + A4,2,1,3,2(@4321) - A4,3,2,1,2(az4321),
(24321,24321 = @4321,4321 + (A2,4,3,2,1 - A2,4,3S2A1,2)(az4321)7

(124321,124321 = (24321,24321 + A1,2,4,3,2(51(CL24321) + A1(@124321))-
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which can be also expressed as the following diagram of operators (here we denote

lmn..
Qijk..,lmn.. by k.. )
agp ..
el s
Aq B AL q
ay ———————>ag .
Tl S2
A,
Aq Ao S
1 21
a1 a1 asy
—As —Ay .53
e sg
1~ /A2\ /A3\A
1 1 21 321 321
as21 421 a321 421 as21 421 a321 ... G421
~A,—7 \Az_ : \Agj o
B Dy § 54
A S 420N yop
4 —As s3> A321 Q421 -
4 A AN
Al 1 Az 21 Az 321 A 4321
Q4321 Q4321 4321 B 4321 4321
e AN As :
82
—Ay 4321 -
EN A
Ay A Ag Ay Ag
1 21 321 4321 24321
24321 24321 24321 24321 Q24321 — A24321
k %37 !
S1 21 - 81
424321
"a .
Aq A Ag Ay Ay Ay
1 21 321 4321 24321 124321
Q124321 — > 124321 — > (124321 124321 Q124321 > A7124321 > 4124321
k Ka‘f
421
124321

Let AY . denote the image A;, ;, . (S*(T*)) modulo 2.
Assume G corresponds to the root lattice, i.e., G = PGOs.

Lemma 7.6. We have A3, =0, A}, = (o3 + o),
A§,4 = ((a3 + o)y, (a3 + ag)as, (a3 + ag)ay), A421,3,4 = (a3 + a4).
Moreover, it holds for any permutation of the set of subscripts {1,3,4}.

Proof. Follows from the fact that Az and A4 are trivial mod 2 on all simple roots
except ap and that Ag4(a3) = Azs(a3) =0, Az a(a3) = az + au. O

From the lemma we immediately obtain
a124321,124321, a1,1 ‘A7 534 = A1(A35,4) =0
124321,243215 A21,21 3A§,374 =0, A2,1(A§4) =0
321,321, 421,421 1A§,271,4 =0, AiQ,l,S =0

A4 _ 2
@4321,4321 -A4,2,1,3 =0, A3,4 =0

All this assuming that ¢ is an idempotent gives

ap = ai,1 = 21,21 = (321,321 = (421,421 = A4321,4321 = A24321,24321 = 0124321,124321-
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So there are no non-trivial idempotents and we have proven the following

Proposition 7.7. Let G be an adjoint group of type D4 and let P be the mazimal
parabolic subgroup generated by all simple reflections except the first one. Let Dp
be a formal affine Demazure algebra corresponding to the additive formal group law
F over Z (or even Z/27) and to the root lattice.

Then the Dp-module D p is irreducible.

Remark 7.8. In view of 5.8, 5.9 and 4.3, this fact implies indecomposability of
the motive of a generic twisted form of a 6-dimensional split quadric.

Assume that wy € T%, that is G = SOg. Then the lemma 7.6 turns into
Lemma 7.9. We have A3, =0, A}, = (o3 + o),
A§74 = ((ag + aq)ay, (a3 + ag)as, (ag + ag)ay, (a3 + ag)w), A§)374 = (a3 + ay).
So we obtain
1124321,1243215 41,1 3A4111273,4 = Al(A4211374) =0
a24321,24321, G21,21 103 54 =0, Ag1 (A5 4) =0
which gives only that
ap = ai1,1 = ag1,21 and (4321,4321 = (124321,24321 = A124321,124321-
Since As(f) = A4(f) for any linear f, we have
Ay2132=A32132
Moreover, direct computations show that
Azaz(a3as) = Azas(aiay) = 1.
So that Az 2 3(g9) = A4 2.4(g). Combining, we obtain
A4,2,1.,3 = A4,2,3,1 = A3,2,3,1 = A4,2,4.,1 = A3,2,4.,1 = A3,2,1,4

S0 a21,21 = @321,321 = Q421,421 = Ga321,4321. Hence, there are no non-trivial idem-
potents as well.

Proposition 7.10. Let G be a special orthogonal group of type D4 and let P be the
mazimal parabolic subgroup generated by all simple reflections except the first one.
Let D be a formal affine Demazure algebra corresponding to the additive formal
group law F over Z (or even Z/27) and to the lattice T™*.

Then the D gp-module D})P 1s irreducible.

Remark 7.11. In view of 5.8, 5.9 and 4.3, this fact implies indecomposability of
the motive of a generic 6-dimensional quadric.

Assume wy € T™* that is G = HSping. Then {«as, as, ay,ws} generates T*.
We claim that A172,374,2(a24321) =0. Indeed, let f = A273)472(a24321) € Sl (T*)
Then
As(f) = Asz2,3,4,2(a24321) = A232.4.2(a24321) = Ao 3.4,2(As(a24321)) = 0.

Now for f = asas + azas + asay + bwy we get A1(f) = as mod 2 but As(f) = as
mod 2 as well.
Similarly, As 21,4,2(a24321) = 0. In this case denote f = Ag 1 42(a24321). Then

Al(f) = A1,2,1,4,2(&24321) = A2,1,2,4,2(@4321) = A2,1,4,2(A4(a24321)) =0.
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By the same arguments, A372117312(a24321) = A374127112 =0.
Consider now A271,374,2(a24321). Let g = A3)472(a24321). We then have A372(g) =
0. Let g = D gcic; Cijictj + Yoo biwaa + dwi. Then

As(g) = caa(aa + ag + aq) + aa(cag + caa) + wa(bs + by).
The fact that Ag2(g) = 0 implies that cag + c23 + c24 = 0. But
A1(g) = cao1 + cagaz + c2a0 + bawy.
So that Ag1(g) = (c22 + c23 + c24) = 0. Combining we obtain that
ap = ai,1 = ag1,21 = 321,321 = 1421,321
and
421,421 = (321,421 = (4321,4321 = (24321,24321 = A124321,124321-
Then the Dp-module D7 p is either irreducible or splits into two irreducible

direct summands with a generating function 1+t +¢* + ¢3 (over S) each.

Remark 7.12. In view of 5.8, 5.9 and 4.3, this fact implies that the motive M of
a H Sping-generic involution variety is either indecomposable or splits as a direct
sum of motives M = N @& N(3), where N is indecomposable with a generating
function 1+t +t2 +t3. Using know result on motives of quadratic forms (e.g. that
after splitting the algebra, the motive of a Sping-generic quadratic form splits into
2-fold Rost motives) it follows that the second decomposition is impossible, i.e., M
has to be indecomposable.

8. ENDOMORPHISMS OF Q;V/WP

In the present section we investigate the endomorphism ring Endq,, (Q7, /Wp)'

Consider a standard basis {fg}, w € WF, of the free Q-module Q*W/va where
fw is dual to d5. Since the Qu-module Qj, W is generated by fi, any endomor-
phism ¢ € Endq,, (Q;V/WP) is determined by it value on fi that is

(2) o(f1) = Z ap fo, 0o € Q.

weWFP
Since ¢ is Qu-linear, it has to satisfy v ©@ ¢(f7) = (v © f1) = ¢(f1) for allv € Wp
which translates as
Z v(ag) fow = Z agfg forallve Wp.
weWr weW?r

The latter is equivalent to
(3) v(ag) = agw  for all v € Wp.

Observe that (3) implies that a coefficient az is uniquely determined by the coeffi-
cient ag, where w is the minimal representative of the double Wp-coset containing
u. In particular, if w = 1, then the respective double coset is Wp and we obtain
the condition a; € Q7.
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Example 8.1. Consider G of type A,, and a parabolic subgroup P of type A,_1,
ie. G/P =P". We have W = (s1,...,5,), Wp = (s2,52,...,8,) and WF =
{1,v1,v9,...,v,}, where s; denotes the i-th simple reflection and v; = s;8;—1 ... s1.
For any ¢ € Endqy, (Qjy ) presentation (2) can be written as
o(fi) =cofi +aafs, +...+cenfs,, where ¢; € Q.

Here we have only two double cosets: Wp = Wp-1-Wp and Wp - s; - Wp. So the
conditions (3) turn into

co € QP and ¢ = Z—i(cl), 1<j<n.
In other words, ¢ is determined only by two coefficients ¢y € Q" and ¢; € Q.

An endomorphism ¢ € Endq,, (Q*W/WP) is an idempotent means that ¢(¢(f7)) =
o(f1), Le.,

(4) Z agw(ay) = ag, w,v,u€ W¥r.

wuv=u

Example 8.2. In the notation of the previous example we have the following
multiplication table on WF:
For j > 1 (assuming vy = 1).

v ifi<j
Vi V; = .
vj—1 otherwise

In particular, for n = 5 it can be represented as a matrix

01 2 3 45
10 2 3 4 5
2 01 3 45
301 2 45
4 01 2 3 5
5 01 2 3 4

where the coefficient at the position (4, j) is the index of v; - v; (we number columns
and rows starting from 0). Observe that from the matrix it follows that each number
r, 0 < r < n appears exactly n+1 times. That is at the r-th column up to (r—1)-th
row (r times), then at the zero column and r-th row (1 times) and r + 1-th column
up to n-th row (n — r times).

The condition (4) then becomes: For each r, 0 < r < n we have

r—1 n
(5) D citviler) e vn(co) + Y e viler) = ¢
1=0 i=r+1

In particular, for r = 0, we obtain
n
A+ Z civi(e1) = co
i=1

and for r = 1 we get

n

co-c1+cr-vi(co) + Zci ~vi(s2(c1)) = 1.
i=2
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Example 8.3. An idempotent ¢ € Endq,, (Q;V/WP) for the group G of type As
and P of type A; is determined by

¢(fi):COfi+le§1+52(Cl)f§2517 COGprv C1 GQ
where ¢g and ¢; satisfy the following 2 equations (for 7 = 0 and r = 1; the equation
for r = 2 is obtained from the one for » = 1 by applying s2)

g+ cisi(er) + s2(crsi(cr)) = co
coc1 + c1s1(co) + s2(c1)s2s1(s2(c1)) = 1.

Observe that tensoring with Q induces an embedding

Endp,. (DF,p) < Endqy (Qi/w,)-
We now investigate its image.

Recall that Dy p C S;V/WP C Q*W/WP is a Dp-module generated by the class
of a point [pt] = zr,pfi € S;V/va where 21/ p = xn/xp, Tp = HQGE; T, and
o = [[4ex- Ta- Therefore, any ¢ € Endp,(DF% p) is determined by its value on
[pt]. On the other hand, ¢([pt]) belongs to D}, p as an element of 83y, v\, C Qjy yy,
if it satisfies the criteria of [9, Thm. 11.9]. Combining these together we obtain
that ¢ € Endq,, (Qjyy,) comes from Endp, (D7, p) if and only if the coefficients
ap € Q satisfy

(6) bg = xr/pag €S and Ty (o) | (be — bsyyw) for all a ¢ Xp.

sw(a)w
Expressing the coefficients a5 in terms of bz € S and combining all the conditions
we (3), (4) and (6) we obtain that ¢ is an idempotent in Endp . (D7, p) if and only
if
v(bg) = by for allv e Wp
> ovea W(Tp)bgw(bs) = xnby, w,v,u € WF
T () | (b@ — b—) for all o ¢ Ep.

Sw(a)W
Example 8.4. In the case (A4, A1) and Chow groups let IT = {«, 3} denote the set
of simple roots. We have Xp = {£8}, 1/p = Tal—aZatsl—(arp) = @*(a+ B)?,
zp = xpgr_pg = —PB2 Set ¢ = xr/pco, €1 = x/pc1 and ¢ = zyypca. Then the
polynomials ¢, ¢1 € S = Z[a, (] define an idempotent in Endp . (D}, p) if and only
if

—(2¢5 — (a+ B)?c151(61) — @®s2(E151(¢1)) = @B (a + )G

—[2oc1 — (v + B)?C151(Co) — a®s2(C1)s251(52(61)) = @B (a + )%

(0% | &0 - 61.

Consider the endomorphism ring Ends,, (S;V/WP). By definition there is an

inclusion

Ends,, (Siy w,) = Endqy (Qyy/w,)-
We will identify the endomorphism rings Ends,, (Sjy/y,) and Endp, (D} p) as
subrings of Endqy, (Qjy/w,)-

Observe that the conditions for being an Sy-homomorphism and an idempotent
in Ends,, (S;V/WP) are the same as (3) and (4) except that all the coefficients have
to be in S.

Consider an endomorphism ¢ € Ends,, (Sjy ) with ¢(f1) = > awfo. Its
image lies in D7 p if the coefficients a,, € S satisfy the criteria in [9, Thm. 11.9].
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Hence, ¢ maps [pt] = ;”—Efl € D% p to an element in D} p, ie. comes from
EndDF (D},P)a if

Tu(a) | ZL(ayw — as,w) for all a ¢ Xp

(here wsy = Sy()w, Lp is the root subsystem corresponding to P, xy is the
product over all negative roots and xp is the subproduct over all negative roots of
Yp). Since zyq) | 72 if w(a) ¢ Xp, it becomes equivalent by (3) to

zp
(7) xw(a) | i_g(aw - Sw(a)(aw))u
for all @« and w € W such that « ¢ Xp and w(a) € Xp.

Example 8.5. Divisibility holds, i.e. any endomorphism over Sy gives rise to an
endomorphism over Dy, if Wp is normal in W.

We consider now only endomorphisms of degree 0 (those that preserve the natural
(0) (S% )

grading). In this case, coeflicients a,, in the presentation of ¢ € Endg,, Wwe

have degree 0, i.e. (for Chow groups) they are from R.

The divisibility condition (7) then always hold as either w(«) ¢ ¥ p in which case
Tu(ay | $2, or w(a) € Wp in which case @y — Su(a)(@w) = 0 as W acts trivially on
R. Hence, we obtain

Lemma 8.6. There is an embedding
0 0 *
Endgyyw)(RIW/Wp]) = Endg,, (Siyw,) < Endg) (D, p).

In the opposite direction if we have ¢ € Endg;

G(2f1) = 3 ,ewr buwfu, Where by, € S satisfies the divisibility condition and
degb,, = dim G/P. Observe that ¢ comes from End(so‘jv

by, is divisible by i—g We have

¢(f1): Z %a’wfw;

weWwr

(D% p), then it is given by

(S¥/w,,) if and only if each

where zx, = ane_n and a,, = rpx_1by, dega, = degxy. Recall that by (4) ¢ is
an idempotent if and only if

> aww(ay) = rsau,

WI=U
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