THE GROUP SK; OF A BIQUATERNION ALGEBRA

BAPTISTE CALMES

ABSTRACT. M. Rost has proved the existence of an exact sequence relating the
group SK7 - kernel of the reduced norm for K; - of a biquaternion algebra D
whose center is a field F' with Galois cohomology groups of F. In this paper,
we relate the group SK3 - kernel of the reduced norm for Ko - of D with Galois
cohomology of F' through an exact sequence.

INTRODUCTION

To understand the K-theory of central simple algebras, one of the most useful
tools is the reduced norm. It is defined for Ky, K7 and Ks. It has been proved
(see [14, Proposition 4]) that it cannot be defined for K3 and satisfy reasonable
properties. The definition of the reduced norm is trivial for K, elementary for
K7, but much less elementary for Ks. A definition for K, was given by Suslin in
[26, Corollary 5.7], which uses the highly non trivial result that the K-cohomology
group HY(X, Ks) is isomorphic to Ko F when X is a complete smooth rational va-
riety over the field F' (see [26, Corollary 5.6]). The kernel of the reduced norm for
K;,i=0,1,2, is denoted by SK; and is difficult to compute for ¢ = 1,2 (it is always
zero for ¢ = 0). The first result on SK; was obtained by Wang in 1949. He proved
in [34] that SK; A is zero when the index of A is a product of different prime num-
bers. Whether SK; was always zero or not was then known as the Tannaka-Artin
problem. No example of an algebra with nonzero SK; was found until 1975, when
Platonov gave the first such example (see [18]). In the eighties, a new approach
has been initiated by Suslin, which is to relate SK; with Galois cohomology of the
base field. Quite a few theorems were obtained in this direction (see [27], [13], [14]
and [15]). The most explicit of these results is a theorem of Rost who proves the
existence of an exact sequence 0 — SK;D — H*(F, us) — H*(F(q), p2) when q is
an Albert form with associated biquaternion algebra D. Since D is of index 4, it is
the simplest case not covered by the theorem of Wang.

About the group SKos, much less is known. Merkurjev has shown in [12] that
SK> of a quaternion algebra is always trivial, but no would-be analogue of the
Wang theorem is known. Once again, the simplest case when this group can be
non-zero is the case of a biquaternion algebra. It is worth noting that an explicit
biquaternion algebra for which SKj5 is non zero can be obtained in the following
way. First, use Rost’s theorem to obtain a biquaternion algebra with a non zero
element x in SK;D (see for example [14]). Then, the cup-product of z by ¢ in
K5D(t) is non zero by residue. Nevertheless, I believe it is of interest to continue
Suslin’s approach, that is to relate SKy with Galois cohomology. This is the subject
of the present work. The main result in this paper is the following, which is an
analogue of Rost’s theorem for SKj.

Main Theorem. Let F be a field of characteristic not 2, containing an alge-
braically closed subfield. Let D be the biquaternion algebra (an) ® (ch)' Let q be
1
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the Albert quadratic form < a,b,—ab, —c,—d,cd > and ¢ a codimension-one sub-
form of q. Let Ny : H¥(Xy,K5) — KoF be the usual norm map in K -cohomology
(see [20]). There is an exact sequence

ker N, —SKyD—H*(F,Z/2)—H"(F(q),Z/2)

The proof of this result is divided into four parts. In the first part, computations
are made using spectral sequences in motivic cohomology, in order to identify spe-
cific K-cohomology groups with Galois cohomology groups (see section 1, equality
(4)). In the second part, we first exhibit an isomorphism between the projective
quadric X, of an Albert form and the generalized Severi-Brauer variety SB(2, D)
of the associated biquaternion algebra D (see theorem 2.13). This isomorphism
ultimately comes from the exceptionnal isomorphism between SL4 and Spin(3H),
where 3H is the orthogonal sum of three times the hyperbolic form < 1,—1 >. We
then use Panin’s decomposition of the K-theory of projective homogeneous varieties
to decompose the K-theory of these two varieties and to pass from one decompo-
sition to another using the previously described isomorphism. We also handle the
functoriality of the decomposition along the natural morphism X, — X, where
q' is a codimension one subform of ¢. In the third part, we partially compute the
topological filtration of X, and X, . To fulfill this task, we use the isomorphism
described in part two. Indeed, part of the topological filtration is easy to compute
on SB(2, D), which is a twisted Grassmannian, because we can use the theory of
Schubert calculus (see section 3.1), but another part of the filtration is easier to
compute on the quadric, because we can then use some results of Chernousov and
Merkurjev on R-equivalence (see section 3.2). Finally, in the last part, we use the
results of parts one, two and three to obtain the main theorem.

Acknowledgments. Most of the results of this article are part of a Ph.D. thesis,
supervised by Bruno Kahn. The author would therefore like to thank him for
introducing him to the subject and for his help and advice. Philippe Gille should
also be thanked for several helpful discussions related to algebraic groups. Finally,
the referee has pointed out new results in the literature to get rid of a characteristic
zero assumption in a previous version of the main theorem. May he be thanked for
his useful suggestions.

Notation. We now introduce some notation that is used throughout the article.

Let F' be an infinite field of characteristic not 2 and Fj., a separable closure
of F. The assumption that F' is infinite is needed for the use of R-equivalence
in section 3.2, but it is not a real restriction since there are no nontrivial central
simple algebras over finite fields. The characteristic not 2 assumption is required
because of some properties of quadratic forms. We usually use F' as the base field,
whenever a base field is needed.

VARIETIES. By a variety over F', we mean a separated integral scheme of finite type
over SpecF'. The field of functions of an integral scheme X over SpecF' is denoted by
F(X). Let K be an extension of F, X denotes the variety X XgpecrSpecK over K.

QUADRATIC FORMS. By a quadratic form, we mean a non degenerate (regular)
quadratic form. Let ¢ be a quadratic form over F'. We denote X, the corresponding
projective variety (defined by the equation ¢ = 0). The field F'(X,,) is abbreviated
in F(p). If K is an extension of F, qx denotes the quadratic form obtained by
extension of scalars from F to K.
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The letter ¢ always denotes an Albert quadratic form whose coefficients on an
orthogonal basis is ¢ =< a,b, —ab, —c, —d, cd >. The letter ¢’ denotes a codimen-
sion 1 subform of q.

CoHOMOLOGY. For a variety X, we denote H?(X,K,) (resp. HP(X,K}")) the
K-cohomology groups of X, that is, the cohomology of the Gersten complex of X
for Quillen K-theory (resp. for Milnor K-theory).

The notation H*(K,Z/m) is used for Galois cohomology of the field K with
coefficients in Z/m. Let Z/m(1) be the Galois module of the roots of unity fi,. A
twist (by j) shall mean that Z/m(1) has been tensored by itself over Z j times, as
in H{(K,Z/m(3)).

Motivic cohomology groups of a scheme for the étale topology whith coefficients
in the ring A over Z, as they are defined by Voevodsky in [32], shall be denoted
by H:, (X, A(n)). The group H.,(SpecF,Z/m(j)) can be identified with the classi-
cal étale cohomology group (and therefore Galois cohomology) H*(F,Z/m(5)) (see

[32))-

CENTRAL SIMPLE ALGEBRAS. We say that a central simple algebra over F' is split
when its class in the Brauer group of F is trivial (i.e. when it is isomorphic to a
matrix algebra over F).

The letter D always denotes the biquaternion algebra (an) RF (ch)_ It is easy

to show that the Clifford algebra of the Albert form ¢ is isomorphic to My(D).
They therefore define the same class in the Brauer group of F'. Moreover, one can
prove (see [11]) that D is a division algebra if and only if ¢ is anisotropic, and that
it is split if and only if ¢ is hyperbolic.

SEVERI-BRAUER VARIETIES. A detailed account of Severi-Brauer varieties and
their properties can be found in [1].

Let A be a degree n central simple algebra over F. The variety parametrizing
the ideals of rank mn of A is called the generalized Severi-Brauer variety of A, and
is denoted by SB(m, A) (or simply SB(A) when m = 1). It is therefore equivalent
for A not to be a division algebra and for SB(A) to have a rationnal point. When
A is split, SB(m, A) is isomorphic to the Grassmann variety Gr(m,n).

1. MOTIVIC COHOMOLOGY

In this section, we assume the base field F' to be perfect. We relate some Galois
cohomology groups of F' and its extensions with K-cohomology groups of certain
quadrics, using ideas originally described in [7]. These are mainly computations in
spectral sequences involving motivic cohomology groups. To be a bit more precise,
we shall prove the following.

Theorem 1.1. After localizing at 2, setting X = X, or X = Xy andY = SB(D),
there are exact sequences

(1) 0—HE,(F, Q/Z(4))—Hg, (X, Z(4))— K>(F) & Ka(F)
(2) 0—HE(F, Q/Z(4))—H (Xy, Z(4))— Ka(F)
3) 0— H?(X, Ka)—HE(X, Z(4))— HE (F(X), Q/Z(4))

and they induce an tsomorphism
(4)  ker(H*(X,K4) — H*(Xp(yy, K1) ~ ker(H°(F,2/2) — H°(F(X),Z/2)).



4 BAPTISTE CALMES

We shall now obtain the exact sequence (1) from the spectral sequence defined
in [7, Theorem 4.4]. This spectral sequence is associated to a geometrically cellular
variety X over a field F (i.e. a variety that is cellular over a separable closure of
F) and a weight n. We will use it only for the quadrics X, and X/, in weight
n =4. In loc. cit, the field is assumed to be of characteristic 0, but this assumption
is only used to identify the Fs terms and the abutment, the construction of the
spectral sequence only requiring the field to be perfect. In fact, the characteristic 0
assumption can also be removed in the computation of the Fy terms and abutment:
a careful check of the proof shows that it is only used in Corollary 3.5 and Lemma
2.2 of loc. cit; Corollary 3.5 is now proved in [6, Proposition 4.11] and Lemma 2.2
(Voevodsky’s “cancellation theorem”) in [30, Corollary 4.10], independantly of the
characteristic in both cases. Note that F' still needs to be perfect, though.

The Es terms of this spectral sequence are motivic cohomology groups of an

étale algebra over F' (see [7, §5.1]), which will always be F' or F' x F' in our case:
Ey? = HP(Eq, Z(n — q)).
It converges, for the antidiagonals p + ¢ < 2n, to the étale motivic cohomology
group HY (X, Z(n)).
In weight n = 4, the Fs terms have the following properties:

(1) for ¢ <0, EY* =0

(2) for ¢ > p, EY? is uniquely 2-divisible

(3) forg>pandg>2, EY?=0

(4) for all ¢, E3* ® Zy) = 0 ("Hilbert 90”)

(5) By* =0
These properties are summed-up in figure 1.

Proof: 1. This follows from the definition of the spectral sequence. 2. This
follows from the long exact sequence in cohomology associated to the short exact
sequence 0—Z—Z—7/2—0, using the fact that classical étale cohomology
H:,(F,Z/m(j)) =0 for i < 0. 3. In this case, the groups identify with sheaf coho-
mology in negative degree. 4. See [31]. 5. The complex of sheaves Z(1) is just G,,
in degree 1, so its cohomology in degree zero HY,(F,Z(1)) is zero. O

After localising at the prime 2, we are left with at most two non-zero terms on
the p + ¢ = 6 anti-diagonal (O and A in figure 1). This induces an exact sequence
(all the groups are localized at 2)

OHESéO*)Hgt (X, Z(4))*>E§52.

Let us now compute some of the differentials to relate the F,, terms with the F5
terms. All the differentials that map to Ej are zero, therefore E%2 is a subgroup
of E§’2. The differentials d;, i« > 3 that map to Ef 0 are zero, as well as all the
differentials coming from E®° i > 2. The differential d3'" is zero (see [7, Corollary
8.6, a]). If dg’Q is zero, we will therefore have an exact sequence

(5) 0 ES"— HE, (X, Z(4)— B2,
In fact, dg’Q is zero if F' contains an algebraically closed subfield. This follows from

Lemma 1.2. Let K5(F),q be the cokernel of the natural map from the Milnor
K-theory group KMF to the Quillen K-theory group K3F. If F contains an
algebraically closed subfield, then K3(F'),q is divisible.

Proof:  Let Fy be the subfield of F' of elements algebraic over the prime
subfield of F. Proposition 11.6 in [16] shows that the cokernel of the morphism
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q

02= 0 after tensoring by Z s
2 =uniquely 2-divisible

Ficure 1. Kahn’s spectral sequence in weight 4

K5(Fo)na — K3(F)nq is uniquely divisible. Since Fj is algebraically closed, K5(Fp)
is divisible (see [24] for char(F) > 0 and [25] for char(F') = 0) and so are K3(Fp)nd
and Kg(F)nd. O

The differential d;’3 is zero. All the differentials are killed by 4 by a transfer argu-
ment (the variety becomes cellular after a degree 4 extension). The differential dg’z
is therefore also zero because E5'' is zero after localizing at 2. Tt follows that E5? =
E3*. The latter can be idenntified with H3,(F x F,Z(1)) ~ K3(F)na X K3(F)pq if
X = X, and with H2,(F,Z(1)) ~ K3(F)na if X = X, (see [7, Lemma 8.2] for the
computation of the étale algebra F' or F' x F involved). Lemma 1.2 implies dg’Z =0
since it is torsion and comes from a divisible group. Hence, sequence (5) is exact.
Identification of the Ey terms yields By = Ky Fx Ko F for X = X, Ey? = Ky F for
X =Xy and ES° = HS,(F,Z(4)) in both cases. The long exact sequence in coho-
mology associated to the exact triangle Z(j) — Q(j) — Q/Z(j) — Z(j)[1] and the
fact that, for i > j, H: (F,Q(j)) = 0 shows that HS (F,Z(4)) ~ HZ,(F,Q/Z(4)).
Sequence (5) therefore becomes sequence (1) or sequence (2) when specializing X
to Xq or Xg.

Let us now obtain the exact sequence (3). We will use the coniveau spectral
sequence for étale motivic cohomology (see [7, Lemma 5.1]) once again in weight
4 and for the varieties X = X, or X = X. Again, although loc. cit. uses a
characteristic 0 assumption, F' is in fact only required to be perfect for the same
reasons as the ones explained for the previous spectral sequence.

This spectral sequence has the following properties (see [7, §5.1]):

(1) E?% =0 for p such that p > ¢ and p > n, as well as for p > g and p = n,
2) EY? is uniquely divisible for ¢ < p < n,

3) after localisation at 2, E7*? is uniquely divisible for p = ¢ < n,

4) after localisation at 2, B~ """ =0,
after localisation at 2, EP" ™ =0,

5)
6) EV? =0 for p > dimX or for p < 0.

These properties are summed up on figure 2

NN N S
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F1GUrE 2. Coniveau spectral sequence in weight 4

As in the preceding sequence, we get, after localization at 2, the exact sequence
(6) 0—E%'—HS(X,Z(4))—E%S.

The group E%* can be identified with £3'* and E%S ¢ EY'Y, since the needed differ-
entials are evidently zero. The group E}"® can be identified with HS,(F(X), Z(4)) ~
HE,(F(X),Q/Z(4)) and E3"* with H?(X,K}'). When F contains an algebraically
closed subfield, the latter can be identified with H?(X,K4). I reproduce here a
proof of this result by Kahn: it is obvious, on the Gersten complex, that the nat-
ural map ¢ : H?(X,KM) — H?(X,K4) is surjective. Using the Adams operations
on algebraic K-theory, one can show that the exact sequence

0— K3/ (F)—K3(F)—K3(F)na—0

is split up to 2-torsion. It follows that ker is killed by 2. We have an exact
sequence

P Ks(F(a)na—H*(X,K}") - H* (X, Ky).

zeX (1)

Each K3(F()),q is divisible (see Lemma 1.2). Since their images in H?(X, K,)
are killed by 2, they are zero.

With these identifications, we get sequence (3) from sequence (6).

The following lemmas are well known.

Lemma 1.3. When X has a rational point,
ker(HZ,(F, Q/Z(4))—H{, (F(X), Q/Z(4)))

is zero.
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Lemma 1.4. Two forked exact sequences

give rise to a canonical isomorphism kern ~ ker &.
Now, Lemma 1.4 applied to sequences (1) (resp. (2)) and (3) gives the isomor-

phisms

(7) ker(HE,(F,Q/Z(4)) > HE,(F(q), Q/Z(4))) ~ ker(H2(X,, K1) = Ku(F)?)

(8) ker(HE,(F,Q/2(4) 5 HE(F(q'). Q/Z(4))) = ker(H* (X, Ka) “ Ky(F)).

It is not difficult to show from the spectral sequences that 7 coincides with the
extension of scalars.

Lemma 1.5. The quadric X, has a rational point over F(Y).

Proof: Since Dy is split, ¢p(y is hyperbolic (see introduction on central sim-
ple algebras). The quadratic form q;,(y) is of codimension 1 in the 6-dimensional
form qp(yy, so by the Witt index theorem, it is isotropic. O

This implies that 1 and therefore &, and £, are injective over F(Y). A diagram
chase using the fact that Ko (F)—K(F(Y)) is injective (see [20]) easily shows that
ker £ is isomorphic to ker(H?(X,K4)—H?*(Xp(y),K4)). Thus, the isomorphisms
(7) and (8) become
(9)

ker(HZ,(F, Q/Z(4)) > H(F(X), Q/Z(4))) ~ ker(H*(X, K1) 5 H*(Xp(y), K1))
Lemma 1.6. The group ker ¢ is killed by 2.

Proof: When X has a rational point, this group is zero (see Lemma 1.3), so the
result follows from a transfer argument using a quadratic extension over which ¢’
(and therefore ¢) is isotropic. O

It is worth noting that the following result uses the Milnor conjecture.
Lemma 1.7. The 2-torsion part of H3,(F, Q/Z(4)) is H3,(F,Z/2(4)).
Proof: The following diagram is commutative.
HE(F, Qo /Za(n)) — 5> HJ(F, Qa/Za/1(n)) ——> HIM(F,2/2(n) > HE(F, Qo /Za(n))
KM(F) © Qa/Z> — = KM (F) ® Qa /2 HEM (R, Q/2(n)

The top row comes from the long exact sequence in cohomology associated to the
short exact sequence

O—>Z/2—>Q2/Z2—)Q2/Z2—)O
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The left vertical isomorphisms come from the Milnor conjecture ([31]) and the right
vertical inclusion comes from the fact that the canonical map has a section. This
shows the other properties of the diagram. The result is then implied by the fact
that the next map in the top sequence is the multiplication by 2. O

Finally, the isomorphism (4) is just the 2-torsion part of the isomorphism (9).

Remark 1.8. (see [7, Corollary 6.7 a]) Using the same spectral sequences in weight
3 yields the isomorphism (for X = X, or X = X/)

(10)  ker(H*(X,K3) — H*(Xp(yv),Ks3)) = ker(H*(F,Z/2) — H*(F(X),Z/2))

without the hypothesis that F' contains an algebraically closed subfield. This iso-
morphism was used by Rost to show his theorem, but is obtained by him in a more
elementary way and in any characteristic different from 2.

2. PROJECTIVE HOMOGENEOUS VARIETIES

2.1. Panin’s decomposition. The K-theory of projective homogeneous varieties
has been completely computed in terms of K-groups of algebras (Tits algebras)
naturally associated to these varieties. Historically, Quillen, in [19] (1973) first
computed the K-theory of projective spaces and their twisted forms (Severi-Brauer
varieties) using resolutions. Then Swan, in [28] (1985) adapted Quillen’s compu-
tations to quadrics. In 1989, Levine, Srinivas and Weyman computed in [10] the
K-theory of twisted Grassmannians (generalised Severi-Brauer varieties) by de-
scent methods. Panin had similar results around that time, using representation
theory. Finally, in 1994, he gave a general computation of the K-theory of projec-
tive homogeneous varieties using representations of algebraic groups (see [17]). We
shall use this last computation for many reasons. First, it is easier to follow the
functorial properties of these decompositions using Panin’s viewpoint; morphisms
coming from algebraic groups induce morphisms on the decomposition. Second,
cup-products in K-theory are quite easy to understand on Panin’s decomposition,
and they are important to us because they respect the topological filtration. In this
section, we shall therefore show some functorial properties of Panin’s decomposition
which can easily be deduced from [17] as well as the way to compute cup-products.

Let us first recall the settings. Let G be an F- split simply connected semisimple
algebraic group. Let Z be the center of G and Y a subgroup of Z. Let T be a
maximal split torus in G,and P a parabolic subgroup of G containing T. We shall
set G = G/Y and P = P/Y Let F = G/P be the quotient variety and ,F the
twist of F by a 1-cocycle v : Gal(Fsep/F) — G(Fep)-

For any affine algebraic group H, let Repr(H) denote the exact category of fi-
nite dimensional F-rational linear representations of H and R(H) the associated
Grothendieck group. The tensor product of representations makes it a commuta-
tive ring. The forgetful functor from Repr(H) to the category of F-vector spaces
induces on their Grothendieck groups the morphism dim : R(H) — Z. Let x
be a character of Z and denote Rep)(P) (resp. Repk(G)) the full subcategory
of Reprp(P) (resp. Repr(G)) whose objects are the representations on which Z
acts via x. Let RX(P) (resp. RX(Q)) be the associated Grothendieck group. The
product on R(P) respects characters, that is

RX(P) ®z RX (P) — R (P)

Furthermore, the characters induce the decompositions (see [17, Lemma 2.8])

& r¥(P) ~ R(P)
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and

P r¥(G) ~ R(G).

An element in R(P) is said to be Ch-homogeneous if it lies in RX(P) for a certain
x- Let W denote the Weyl group of G, and Wp the subgroup of W whose elements
w verify wPw~' = P. Let X = Hom(T,G,,) and X, the subset of X of those
elements who induce the character x on Z. Then

R(T) ~ Z[X]
R(P) ~ Z[X]"r
R(G) ~ Z[X]V
and ~ _
RX(T) =~ Z[X,]
RX(P) =~ Z[X)"r
RX(G) ~ ZIX V.

Moreover, R(G) is a polynomial ring - in the classes of fundamental representations
- and R(P) is a free R(G) module (see [17, Theorem 2.10]).

Let Vect®(F) denote the category of vector G equivariant vector bundles over
F. There are well known functors (see [17, §1])

Ind : RepF(P)—>V€Cté(~7:)

and }
Res : Vect (F)— Repr(P)
which are equivalences of categories and induce in K-theory isomorphisms inverse
to each other )
Ind : R(P)—K§ (G/P)
and )
Res : K§'(G/P)—R(P).

Central simple algebras can be associated to every character x and cocycle 7.
These algebras are called Tits algebras and were first introduced by Tits (see [29]).
Take V, in Rep}(G) and let A, = Endp(Vy), then twist A, in A, by the cocycle
obtained by pushing v to PGL(Fy.p) = Autp,,,(Ay ®F Fsep) using V.

Lemma 2.1. (see [17, §3 and Lemma 3.4])

(1) The class of A, 5 in the Brauer group of F' is independent of the represen-
tation chosen in RepX.(G).

(2) If we choose Vy, =V, ®p V), then A, , ® A/ 4 ~ Ay, ~. In the general
case, we only have A, , @ Ay o ~ Ayyr

(3) A1y~ ALy

(4) If a € RX(G), then ind(A, ) divides dim(a).

Proof: 1, 2 and 3 are proved in [~ ]. To prove 4, we just need to show that
for every representation V € Rep)(G), ind(A, ;) divides dim V. But since the
d)egree of A} =, End(VY) is dim V[, it is divisible by ind(4] ) = ind(A, ;) (by
1). O

Let U’' € Vect®(F) be a vector bundle on which A, acts on the right. The
twisted form U’ of U’ is naturally equipped with a right action of A, ,. The
biexact functor

RepX.(P) x (Ay ., —mod) — Vect(,F)
(U, M) — L (Ind(U) @p V) ®a, , M

XY
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induces a pairing

Moy * RX(P) ®z K*(Ax,'y)—>K*(v}-)-
For a Ch-homogeneous element a € R(P), define Pa,y 8S

Paq i Ki(Ay,) — K.(F)

@ = s (@@ ).
The main theorem in [17] is the following.

Theorem 2.2. (see [17, Theorem 4.2]) For any Ch-homogeneous basis {a;|i =
1...n} € R(P) of the free R(G)-module R(P), the morphism

Z‘Pai,'y : @K*(Axai,v)_)K*(vf)
i=1 i=1

is an tsomorphism.

Remark 2.3. It is clear on this decomposition that Ko(,F) is torsion free, hence
injects in Ko(,Fg) for any field extension E of F.

Let us now show a few properties of this decomposition.

Lemma 2.4. For a and b two C'h-homogeneous elements, z € K,(A,,) and y €
Ki(Ay,),
Pab,y (TY) = Pay ()b (1)
Proof: This follows from the commutativity of the diagram

RX(P) ® RX (P) @ Ki(Ay,») ® K;(Ay ) ——> RX(P) ® Ki(Ay,,) ® RX (P) ® K; (A )

l-@- lux,'y®ux/),y

RN (P) @ Kitj(Ayys ) Ki(4F) ® K;(,F)

\L“xx’,’v \L

Ki+j(-y.7:) Ki+j(7]:)

which amounts to the identification of tensor products in the underlying categories
O

Lemma 2.5. The morphism ¢, , commutes with extension of scalars and with the
norm for a finite extension of the base field.

Proof: In the definition of u, ., all the terms commute with the extension of
scalars and the norm (which is just a restriction).
O

As mentioned above (Lemma 2.1), A,/ ~ Ay, ® Ay 4. Let Bys ., be the
division algebra Brauer-equivalent to A,/ . Define Res : K,(Ayy/~) — Ki(Ay5)
as the composite of the Morita invariance morphism from K, (A, ) to K. (Ay 4 ®
B, ) with the restriction of the latter to K,(Ay ).

Lemma 2.6. The following diagram is commutative.
. , . (Id.I1d)®Id )~
RX(G) @ RX (P) ® Ku(Ayy y) — = B(P) © Ku(Ayy )

K.(+F)

Hx? oy

RX(P)® K, (Ayy)
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Proof:  This amounts again to identifying tensor products in the underlying
categories. O

Lemma 2.7. Let a be a Ch-homogeneous element of R(P) such that a = 3, Arbk

where the by, are also Ch-homogeneous and free (as a subset of the R(G)—module
R(P)) and X\, € R(G) for all k, then

Proof: Let us first prove that the A, are Ch-homogeneous. Let A\ = ), €1

where the ¢ € R(é) are C'h-homogeneous of character x; 5 (Xi,5 # Xr, When
[ #1"). For every k, the product ¢ ;b is Ch-homogeneous.

a = Y pd€kibk

- ZXU«X% =Xa €r.ibr + ZX’#Xa ZXl,kka =X’ €k, 1k

Since a is homogeneous of character x,, each > s €10 from the second

X1, kXb, =X
sum is zero. Since the by are free, all the € ; in this sum are zero.

a = ZXL,kka:Xaekak

This implies that x; , = XaXb_kl (independant of [). Thus, for each k, there is only

one [ such that e;; # 0 and Ay is therefore Ch-homogeneous of character Xaxgkl.
This fact, as well as Lemma 2.6 proves the following equalities.

30‘177@) = :uXaKY((Zk; Arbi) ® x)
= g Hxay (Al ® )
= 2 /j‘XdAkbkA’y(/\kbk ® )
= Sk witi g H, o (b © Resi(2))
_dim(\0)

k ind(Akaﬁ)SDbk,v o Res(2)

where Resj, = Res Ay, Ay

Lemmas 2.4 and 2.7 enable us to compute cup-products. We shall now take care
of the functoriality of the decomposition. For a detailed account of twisted forms,
we refer the reader to [22, §5] and [21, §2].

We shall just need to investigate the simplest case of functorial behaviour, that
is when all the particular subgroups used in the construction are preserved by a
morphism between algebraic groups, as well as the cocycle used for twisting. A
more general case would be for example when the center is not preserved, but we
shall not need this. Let G and G (resp. P and P, resp. Y and Y’ ) two algebraic
groups as above (resp. two parabohc subgroups, resp. two Subgroups of the centers
of G and G’) Let f : G’ — G be a morphism such that P’ (resp. Y', Z') is
mapped to P (resp. Y, Z). In such a case, a element v/ of H'(Gal(Fy.,/F),G")
can be pushed to an element vy of Hl(Gal( Fsep/F),G) and we get a morphism
o f iy F—y F.

We must now explain how the algebras A, behave under this functoriality. Let
v : Gal(Fysep/F) — G’ be a cocycle. Let V,, be a Ch-homogeneous representation
of G and A, = Endp(V,). Since Y’ is mapped to Y by f, V, is pulled-backed to
a Ch—homogeneous representation V, of G'. Let Ay = Endp(V,/). Evidently, we
have A,s ~ A,. Using V,, we can push 7' to 7/ : Gal(Fy.p) — Aut(A, @p Fiep)
by the composition

Gal( sep) —> G/( sep)—>PGLF

sep

(VX' F Fsep) = AU-t(AX' QF FSEP)



12 BAPTISTE CALMES

in which the morphism from G'(Fycp) to PGLF,,,(Vy ®F Fyep) is induced by the
obvious one from G’ to PGL Fuepy (Vi @F Fiep). Tt is well defined since Y’ is central
in G’ and the representation is Ch-homogeneous. This defines a map from the
characters to Br(F') called Tit’s map. From the following diagram, it is clear that
Ayt iy 2 Ay -

’

Gal(Fyep) —— G'(Fioep) —> PG L, (Vo @F Fiep) —> Aut(Ay @p Fuep)

gt | )

G(Fsep) —— PGLp (VX RF Fsep) = Aut(AX RF Fsep)

sep

Let idy, @ Ki(Ay ) = K (A, ) denote the isomorphism induced in K-theory.
It is now easy to deduce the following lemma and proposition.

Lemma 2.8. The following diagram is commutative.

Hox,

RX(P) @7 K.(Ay,,) — K.(,F)

f*®idx'xll lf;/

Hx? !

Rx’(Pl) 9z K.(Ay ) —> K (4 F)

Proposition 2.9. Let G, G/, ]?, PY, Y f, fy’Nand v be as above, let a be a
Ch-homogeneous element of R(P), then f*(a) € R(P’) is Ch-homogeneous and we
have the equality ~ f* 0 o~ = Qr(a),y © 1y x -

Proof: This follows from Lemma 2.8 and the definition of ¢q . O

In the following, we shall omit the morphism id, ,-.

Lemma 2.10. Let G and G5 be algebraic groups equipped with subgroups as above.
Let P, x P2 be equlpped with the product subgroups Let iy (resp. pi1) be the
inclusion G; — G x Gy (resp. the projection Gy x Gy — G1). Let 4 be a cocycle
on G1 X Go. Then

pr()t© Ppi(a),y = Pa,pi(v)-

Proof: From Lemma 2.9 applied to p1 and -y, we deduce ,pj 0@, p, (4) = ©p1(a)y
The twisting respects the products, so that p; oy, (y) i1 = id (see [22, Chapter 1,
§5.3]). Applying ,, (4)i] on the left-hand side proves the lemma. O

2.2. Quadrics. We now explain what this construction yields in the case of a
quadric. This is done in [17] and is just repeated here for the sake of complete-
ness and because we shall slightly modify the notation used in [17] to be coherent
with the rest of our text. We only use the cases of a quadratic form of dimension
n=4m+2orn =2m' + 1.

Let H denote the hyperbolic form xy. Let G= Spin(h), where h is the hyperbolic
form [n/2]H, and G’ = Spin(h’), where b’ is the hyperbolic form [n/2]H 1< 1 >.
The centers Z and Z’ are py and jp. We shall take Y and Y’ equal to pg. This
yields G = SO(h) and G" = SO(R'). The tori T and 7" are diagonal, and T and
T' are their prelmageb in G and G’. The group G (resp. G') acts on the projective
space P" 71 (resp. P D). Let P (resp. P’) be the stabilizer of the projective point
(1:0:...:0) and P (resp. P') the preimage of P (resp. P’) in G (resp. G'). The
variety .7-' G/P (resp. F' = G'/P’) is then the projective quadric defined by the
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equation h =0 (resp. b’ = 0).
Let 7; (resp. r}) be the character of T (resp. T”) induced by the character of

T (vesp. 1”) such that r;(a) = ag;—12;—1. Let & be the character of the spin
representation of G’ and §, and §_ the characters of the two spin representations

of G. We have
("% = r.. Tt 2]
5_2,'_ = T1... T[n/2]—17ﬂ[;/2]
52_ = T1... T[n/g],lr[n/g]

The character group of h' is
X' =20 @ ® Ly g4 ® LY
and the character group of h is
X=Zr & &Ly g1 ® Loy
The Weyl group W’ of G/ is Sz X Signfnm] where SignEn/Q] is the group Z/2(*/2

and the Weyl group W of G is Sny2 X Signpy, 2, where Signy, ) is the group
ker(Z/2!"/2l—7/2) (the morphism is the sum). The Weyl group acts by permuting

the r; (resp. r]) for the factor &,/ and changing r; in ;" (resp. r} in (r])~1)
for the factor Signp, s (resp. Signin/Q]). The group Wp (resp. Wp) (see the

beginning of section 2.1) is the stabilizer of r1 (resp. 7). We get

R(T") = Z[X"] = Z[(r})) ", (P 1) 0]
and ~ ~

R(T) = Z[X] = Zlr™ g 10 64, 0-).
We define
= @)= > = > 8
U)ES’igTL[,,L/Q]ﬂWP wGSign[”/Q]ﬁWP wESign[n/g]ﬁWp
They are fixed by Wp. We also define
g = Z (&), By = Z §Y, B = Z 5v.
WESIGN [y /2] WESiIGN[y /2] WESiIGN(y /2]

They are fixed by W. We denote 6; (resp. 6}) the i-th elementary symmetric
polynomial in y1,...,Ym/2 (resp. yo,. .., Yn/2)) Where y; =7 +7‘i_1. We define the
same polynomials with the r,. We get

R(P) = ZP?’}W{’ = Z[(r)F (01 (0], )10
R@G) = Z[XY = 2.0, .0

and ~ ~ »
R(‘Z?) - Z[)f'}WP = Z[rl a0%7~~'79[1n/2]_17777a77+]
R(G) = Z[X}W = Z[elv"°76[n/2]—175776+]

The dimension of an element of R(G), R(P), or R(G) can be obtained by replacing
the r;, 6, 64 and d_ by 1.

We get the decompositions

R(P) = R(G).1® R(G).r @ ...® R(G).r{ > @ R(G).n- & R(G).n,
and } ~ } } 3
R(P) = R(G"N1®R(G)r| @ ... R(G).(r)" & R(G).0

The algebras A, . are all I for the powers of r1 (or r1) and A, , 5 = Co(yh').
We have Co(,h) = Cy (vh) ® Cy (yh) which yields Ay, - = Cg (yh) et Ay, =
Cy (vh) (see [17, §5.1]). Any quadratic form with trivial discriminant and with the
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same dimension as h can be obtained as a twisted form of h. Any quadratic form
with the same dimension as h’ can be obtained as a twisted form of I/. The variety
+F (resp. o F' is then the projective quadric X j (resp. X p).

We then get the decompositions

~

D@ Ku(F) @ ... @ K (F) @ K.(Cq (1) ® K.(Cf (1)) = Ko (X,1)
=1
and

Y @l K (F)® ... ® K.(F) © K.(Co(yh')) = Ku(X w)

2.3. Generalized Severi-Brauer varieties. In this section, we shall do the same
thing as in the preceeding one, but for generalized Severi-Brauer varieties.

Let G = SL,. Its center 7 is tn- We take Y = Z. We then get G :~PGLn.
The torus T is the image in PGL,, of the diagonal subgroup of GL, and T is the
diagonal subgroup in SL,,. We then take

P= {( 8 Ic) ) avec det(a)det(b) =1} C SL,

in which a (resp. b) is a square matrix with k (resp. n — k) rows. Let ¢; be the
character of T" induced by the character t;(a) = a;; on T. The Weyl group W is
S, and Wp is the subgroup & x 6,,_r. We get

X=(Zt, & BZt,))Z(t + - +1,)

and, if we denote o; (resp. o}, resp. of') the i-th elementary symmetric polynomial
in the variables t ...t, (resp. t1...tg, resp. tpi1-..tn),

R(T) Z[X = Z[EE (et — 1)
R(]?) = Z[{(]WP = Zo},....0%,01,...,0n ]/ (opon 1 — 1)
R(G) ZIX|W = Zoy,...,00)/(00n —1)

The dimension of an element of R(T), R(G) or R(G) can be obtained by replacing
We get the decomposition

R(P) = P R(G).0a

where o, is the Schur polynomial (see for example [4, p. 49]) whose multi-index
« spans the sequences aq,...,a; such that n —k > a3 > ... > a; > 0.

The algebra A, - is A?d(a) where d(a) = a1 +--- + a and A, ~ ,End(V).
The vector space V is the n dimensional one whose subspaces are the points of the
Grassmann variety. We get the following isomorphism.

D¢ D KLAFN) T K, Gr(k.n)

Generalized Severi-Brauer varieties SB(k, A) (see [1]) are twisted Grassmann vari-
eties and therefore part of this framework.
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2.4. The special case of SLs and Sping. Recall that ¢ denotes an Albert qua-
dratic form and D a biquaternion algebra (related by the fact that the class of D
in the Brauer group of F' is the clifford invariant of ¢). In this section, we shall
explain how the classical isomorphism between SL, and Sping induces an isomor-
phism between the quadric X, and the generalized Severi-Brauer variety SB(2, D).
In the split case, ¢ is isomorphic to three times the hyperbolic form H =< 1, —1 >,
D is a matrix algebra and SB(2, D) is the grassmannian variety Gr(2,4). It is well
known that the quadric X3g and Gr(2,4) are isomorphic. We shall see that such
an isomorphism can be obtained from an isomorphism between SL, and Spin(3H)
of which we shall give an explicit construction. This will permit us to relate their
representation rings and compute the induced morphisms on Panin’s decomposition
of the K-theory.

Let us now briefly recall the classical isomorphism between SL, and Spin(3H).
Let V be an F-vector space of dimension 4 with a basis vy,...,vs. Let W = A2V.
It is naturally equipped with a symmetric bilinear form

A%V x A2V — AV ~F
(ug Aug,uz Aug) +——  up Aug Aug A ug.

The quadratic form associated to this bilinear form is hyperbolic; it is given by the
formula x1y1 + x2y2 + x3ys on the basis w1 = vy A vg, we = v3 A V4, w3 = V3 A V3,
wy = v AN vy, wy = vy Avy and wg = vg A vg. Let us denote this form h.
An element g of SL(V) acts on W by u3 A ug — g(u1) A g(uz). This de-
fines a morphism ¢; from SL(V) to GL(W). By definition of the determinant,
g(ur) A gluz) A glug) A gug) = det(g)ur A us A ug A uy, therefore h is conserved
by the action of SL(V') and g; actually maps to SO(h). Since Spin(h) and SO(h)
are both simple and simply connected groups, g; lifts to a unique morphism ¢ from
SL(V) to Spin(h). In fact, ¢ is an isomorphism for SL(V) and Spin(h) have the

same dimension.

Let f: Spin(h) — SL(V) be the inverse of g.

Lemma 2.11. The following diagram has exact rows - as complexes of algebraic
groups - and is commutative.

1 —— p2 —— Spin(h) —— SO(h) ——1

)
d
)

1 — po —> SL(V) —2> SO(h) —= 1
Proof: The right square is commutative by definition of g and the left square
has to be commutative, otherwise g would not be an isomorphism. O

From now on, let us set G; = SL(V) and G = Spin(h). As in sections 2.2 and
2.3, we will denote Tl and Tg the two maximal tori and ]51 and }52 the two parabolic
subgroups. Let us recall that Th is the preimage in Spin(h) of the diagonal torus
Ty of SO(h). The morphism g; maps a matrix of T) as

t1to
t1 (0) t3ty (0)
to tots3
t3 t1ty
(0) ty (0) t1t3
tyato
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where t1totsty = 1. Thus, g induces an isomorphism between Tl and Tg. The par-
abolic subgroup P; is the subgroup of SL(V) which stabilises the plane < vy, vy >,
whereas P is the preimage in Spin(h) of the subgroup in SO(h) which fixes the pro-
jective point (1:0...:0). Anelement s in SL(V) verifies s(v1 Avy) = Avg Avg if and
only if s stabilises the plane < v1,vs >, so 151 and 152 are also isomorphic through
g. This gives the classical isomorphism f from X = C~¥2/]52 to Gr(2,V) = e /]51

Lemma 2.12. Let Pl;, denote the natural embedding of X; in P® and Plk the
Pliicker embedding of Gr(2,V) in P5. The diagram

Pl
Xh h P 5

lf Plk

Gr(2,V)
is commutative.

Proof: The projective space P® is the quotient G3/P; where Gg = SL(W)
and Py is the subgroup of SL(W) that fixes the projective point (1 : 0... : 0).
By definition, the Pliicker embedding is induced by the morphims ¢; (as described
above). The embedding of X}, in P® is induced by the natural embedding of SO(h)
in SL(W). Since Py is the preimage of P, by definition, we are done. O

It is completely straightforward to check that the natural inclusion SO(h') —
SO(h) maps the parabolic Py to P, (not surjectively) and induces the inclusion
Xy — Xy,

Let us now see how the representation rings R(P;), R(P;) and R(Pj) map to
each other. From the mapping from Ty to Ty described above, we get

g*(r1) = tits
g*(r2) = tats
g (rs) = tits

To find the image of d,, we can use the fact that the spinorial representation whose
highest weight is 0 is precisely the standard representation of SL(V), t1 + ta + ts,
so 04 maps to ti, ty or ts, according to the choice of the basis. In our case,

82 = rirarst, g*(6%) = g*(r1).9%(r2).g"(r3") = 13, so g*(64) = t» and g*(6_) =
9" (64).9"(r3) = t1tats. Hence,

(11) g*(l) = 1’g*(r1) = t1t2’g*(r2) = t2t3ag*(r3) - tlt?n

9" (04) =t2,9"(0-) = talats
and
(12) f*(1) =1, (1) =0-ry ", f*(t2) = 04, f*(ts) = 0ry*, f*(ta) = Oy 'y
Let i denote the inclusion SO(h') — SO(h). Clearly, i*(r1) = rq, i*(r2) = rj and
i*(r3) = 1 since 7 maps Ty to Ty as

- ! (0)

From this, we can deduce that i*(62) = i*(62)
=i*

(6")2, and since the caracter
group is a free Z-module, we must have i*(d) )=

a
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‘We must now explain what happens in the non-split case, that is when we twist
these varieties and morphisms by cocycles. It will turn out that the isomorphism
f:Gr(2,V) — X;, will be twisted in an isomorphism ~ f : SB(2, D) ~ X, and the
morphism 4 : X, — X}, will be twisted in a morphism i : Xo — X,.

Lemma 2.11 induces the commutative diagram with exact rows

1 —— 2 —— Spin(h) —— SO(h) ——1

P
1 ——> fis —> SL(V) —= PGL(V) — 1

These short exact sequences induce the following exact sequences in cohomology,
since g, resp. pg4 is central in Spin(h), resp. SL(V) (see [22, Chapter I, §5.7]).
The boundary morphisms between degree 1 and 2 terms induce the commutative
diagram

HY(F, SO(h)) — H2(F, jiz) —~— s Br(F)

| -

HY(F, PGL(V)) —> H?(F, 1) < 1Br(F)
Let v be an element of H(F,SO(h)) such that ,h = ¢. Its image in 2Br(F)
is wa(q) — wa(h), where wq is the Stiefel-Whitney invariant (see [22, chapter III,
§3.2, b]). It is given by the formula wa(q) = >_,_,(as,a;), where the (a;) are the
coefficients of ¢ on an orthogonal basis and (a;,a;) is the class of the quaternion
algebra ('“ F’”) in Br(F). Using the relations

(a7 b) = (b7 a)v (azv b) =0, (aa 1- a) =0, (av _a) =0, (a’a bC) = (aa b) + ((l, C)v

we get wa(q) — wa(h) = (a,b) + (¢,d) = [D]. Now, the image of a cocycle v €
HY(F,PGL(V)) = H'(F, Aut(End(V))) in 4Br(F) is the class of the twisted form
~End(V) of the algebra End(V) (see [21, Chapter X, §4 et §5]). Furthermore,
the twisting of Grassmann varieties is compatible with the twisting of algebras,
meaning that the twisted form ,Gr(k,V), v € H'(F, PGL(V)) is the generalized
Severi-Brauer variety SB(k,, End(V)) (see [1], after Theorem 1). We have therefore
proved the following result

Theorem 2.13. The isomorphism [ from Spin(h) to SL(V) induces an isomor-
phism from X, to SB(2, D).

The commutative diagram

1 —— p2 — Spin(h) SO(h)
1 —— te —— SL(W) —— PGL(W) ——1
induces the following commutative diagram in cohomology.
H'(F, Spin(h)) ——> H'(F, SO(h)) ——> H2(F, z) > ZBT%
HY(F,SL(W)) — HY(F, PGL(W)) — H?(F, ug) — ¢Br(F)

This shows that the cocycle used to twist X} is sent by the morphism that induces
the inclusion of X}, in P® to a cocycle whose image is trivial in Br(F). The only
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forms of the projective space are the Severi-Brauer varieties, and a cocycle that
produces a non-split Severi-Brauer variety has a non-zero image in Br(F) (since
the corresponding algebra cannot be split). So we have proved the following lemma

Lemma 2.14. The commutative diagram of Lemma 2.12 twists to a commutative
diagram

Ply,
~ 3
Xq —_— P5

wfi
 Plk
SB(2,D)

Let us now handle the twisting of the morphism between Xj. and X;. We want
to understand how the decomposition h ~ h’ 1< 1 > can be twisted in g ~ ¢’ 1<
d+q" > (since d+q = 1). The decomposition in the split case yields a morphism
O(h') — SO(h). But since dim &’ is odd, we have O(h') ~ SO(I') x ps (by M —
(det(M)M,det(M))). This induces a morphism SO(h') x g — SO(h), where —1 €
p2 is sent to —Id € SO(h). The element v € H'(Gal(F sep)/F),O(h')) twisting h’
in ¢’ will therefore yield by push-forward an element v € H'(Gal(Fs,/F), SO(h))
twisting h ~ h' 1< 1> in ¢~ ¢ 1< d+q >. To explain what happens on Panin’s
decomposition, we shall use the groups and subgroups defined in table 1 below.

G Spin(h’) Spin(h’) X p2 Spin(h) X po Spin(h)

Py Fix(1:0:...:0) | Fix(1:0:...:0) X po | Fix(1:0:...:0) x po | Fix(1:0:...:0)

Z> M2 M2 X p2 Ha X ph2 Ha

Y H2 p2 x {1} 4 2

G SO(h") SO(h") X p2 SO(h) SO(h)

P Fix(1:0:...:0) | Fix(1:0:...:0) X pua Fix(1:0:...:0) Fix(1:0:...:0)

Z2 {1} {1} X p2 M2 p2
F=G/P X7 X X,

h
TABLE 1. Notation

Thus, ég = Spin(h') x ps for example. Note that the inclusion Y;’” = g — g X
Ho = Z;’ " is the identity onto s and the quotient map onto po. We shall define i :
élg —>d”2 as the natural inclusion, %2 : d/lg —>G~’”2 as the identity on uo and the
inclusion Spin(h’) — Spin(h) on Spin(h’), i3 : Go—G""5 as the natural inclusion
and i : G’y — Gy as the inclusion Spin(h') — Spin(h). All these morphisms respect
the subgroups mentioned in table 1, therefore they induce morphisms i; : G5 — GY,
io : GY — GY' i3 : Go — GY and i : Gy — G4. Notice that i301 = iy 01y, and
that i3 is the identity morphism of SO0(h). The morphism i; induces the identity
on Xy, 12 and ¢ the inclusion X, — X} and 43 the identity on X;. We shall
denote these induced morphisms by the same names. Now, let v and v = is(v")
be as above, and let 7/ be the projection of v on H'(Gal(Fy.,/F), SO(h')). The
twisted morphism i1 : Xy — Xy is also the identity, ,»iy : Xy — X, is the
inclusion induced by the decomposition ¢’ L< di1¢’ >~ g and i3 : X, — X, is the
identity. The only reason why we introduce these new groups and morphisms is to
avoid explaining how to twist ¢ to get the morphism X, — X, because it cannot be
obtained by the simple functorial behaviour explained above (clearly, i.(y') # 7).
Instead, we shall consider (,i3)™" o ig 0,/ i1, which we shall denote (improperly)

~1.
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Lemma 2.15. The commutative diagram

"= SO(I) X pg —— SO(h) = GY'

i |

SL(W') —— = SL(W)
induces the - cartesian - commutative diagram

i
Xq/ —_— Xq

V,,Pl,,_qu,i iwpzh_mq
P4 _— P5

Proof: We just have to prove that the cocycle v € H*(Gal(Fsep/F), SO(W') x
pa) (vesp. v € HY(Gal(Fsep/F), SO(h))) is pushed forward to the trivial cocycle
in HY(Gal(Fsep/F), SL(W")) (vesp. H'(Gal(Fs.p/F),SL(W))). Actually, we have
already done so for v in the proof of Lemma 2.14. If we decompose 7" as (v/,¢€)
(coming from H'(Gal(Fsep/F), SO(N))® H' (Gal(Fsep/F), p12), the same proof ap-
plies for 4’ as for . For the cocycle e, we just have to notice that to find the twisted
form of the projective space that we might obtain, we have to push the cocycle to
H?(Gal(Fyep/F), u2) using the exact sequence

1— pug — SL(W) — PSL(W) — 1

and since the map ps — SL(W) factors through g, this push-forward has to be
zero. O

2.5. K-theory and morphisms. We shall now use the results of section 2.1 to
follow the morphisms introduced in the last section on Panin’s decompositions of
the K-theory of quadrics and generalized Severi-Brauer varieties.

In section 2.3 and 2.2, we have seen that (1,71,7%,75,7_,n,) is a basis of the
R(G3)-module R(P,), (1,7}, (r})2,7') is a basis of the R(G})-module R(Pj) and
(00,0,01,0,01,1,02,0,021,02,2) is a basis of the R(Gl)—module R(]Bl). Let us recall
that o; ; is the Schur polynomial in ¢; and t5, and o; (resp. o}, 0’) is the elementary
symmetric polynomial of degree i in ty,...,t4 (vesp. t1,t2, t3,t4). Furthermore,
titatsts = oholl = 1. From the set of equations (11), we get

g(r1) = tita=o0y =01,

g (rf) = (0y)* =0i1 =092

9*(Ti)’) = (Jé)B = Ui)’,1 = 04020 — 03021 + 02022

g (ns) = to+titats(tats) ™t =0 =010

g*(n=) = titats +ta(tats) ™! = cho! = 01011 — 02,1

Note that the last equalities on the right can easily be checked since they are defined
between polynomials. However, there is a way to find such equalities systematically
(see for example [3]). We now choose the cocycles as in section 2.4, and we do
not mention them anymore in the notation. The algebras corresponding to each
character are only defined up to their class in the Brauer group of F (see section
2.1, Lemma 2.1). According to sections 2.2 and 2.3, we can choose A, = DOl
for the P, characters, A’“i =D%®* A, =D and A, = D®? for the P, characters

and Ay = D®*, A,y = D for the P} characters. Using Proposition 2.9, we get
9°1(2) = Po o (T), §70r, (2) = o1, (), 7P r)2(2) = Cos , (2),
g*(pmr (.’1?) = 9001,0(37)'
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On the other hand,

.g*Qo(rl)3 (JZ) = Po402,0—0302,1+02022 ($)
and
9*907;7 (33) = @0101,1702,1(35)

Let M 4,4 be the Morita morphism between the K-theory of two Brauer-equivalent
algebras A and A’. Let A and B be algebras with a non-zero morphism from A
to B. Denote Resp, 4 the restriction in K-theory and I4 g the morphism induced
by the functoriality of the K-theory of algebras. For central simple algebras, these
morphisms do not depend on the non-zero morphism. From Lemma 2.7, we deduce,
when D is a field (ind(D) = deg(D) = 4),

Po402,0-0302,1+0202,2 (:ZZ) _ _

= Poa (RGSD®6,D®2 (SL')) 2z (RGSD®67D®3 (:1:)) + 6(,0[,272 (RGSD®6,D®4 (CL'))
= 9002,0 (MD®67D®2 (x)) — @02,1 (RGSD®47D®3 o MD®67D®4 (J,‘))

+6<p02.2 (NID@S,D®4 (‘r))

and

900101,1—02,1(x)
= 9001,1(ReSD®3,D®2 ((E)) - 9002,1(‘%) = 9001,1(l%eSD‘@f’,D‘X’2 (x)) - 9002,1(.%)

This sums up as

g o1 = Pooo

g P = Por,

g*@(rl)2 = Poz

(13) G P = Pos, ©Mpes pe2

*(,00211 e} ReSD®4’D®3 (e} MD@G’D®4
+6§002’2 o MD®6’D®4

9*9077+ = Yo

9 Pn_ = $g, ©Respes pez — Yo, ,

from which we can easily deduce the inverse morphisms

["o00 = ¢1
f*<)00'1,o = QonJr
f*SOCHJ = ¥r
(14) f*spﬂz,o = 16307«1 — 690(,«1)2 ¢} MD®2,D®4 -+ P(ry)3 O MD®27D®6
—¢n_ olpe2 pes
f*9002,1 = $r © ReSD®3,D®2 — ©n_
[ 000y = )2

These equalities stay true when D is not a field (which wasn’t the case of the
formulas containing the Res morphisms).

Let us now compute the functoriality along i : X — X,. From the definition of
iy We get 4i* 0 =~ 05 0nniho(4i5) T 0, 4. Let Ps (resp. 1) be the projection
Spin(h) x pa — Spin(h) (resp. Spin(h’) x pa — Spin(h')). Since p3 o i3 = id, the
formula (,75) 710 @1, (0) = Paia(y (Lemma 2.9) yields (1i5)~ 0 @ar, = Py (ayisia)-
The morphism i3 is in fact the identity of SO(h), so we have i3(y) = 7. Thus,
4% 0 Pay =y 4] 04 05 0 Ypr(a) 4. From Lemma 2.9 and iz(y”) = 7, we have
v13 O Ppr(a)y = Pizops(a)y"" Actually, ps 0 i3 = i o Py, SO we now juste have to
compute /4] 0P o (a) " Since 7' = p1(7), Lemma 2.10 yields »i* @4y = @4+ (a),y'-
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Therefore, dropping the cocycles from the notation, we have

"1 = ¥

"oy = ¢

() = Payy
(15) e (@) = pups

= P1-((B)2 -0~ 1) (61 1) (1)) 2+
= —¢p1— 1oy +5¢¢2 + @ olpp
Vo, = Py
(" = Py
in which we have used Lemma 2.7 to compute ¢, )s.

2.6. Cup-products. We now give the results of some cup-products that we use in
the next section. These computations are straightforward applications of Lemmas
2.4 and 2.7. For the K-theory of SB(2, D), to use Lemma 2.7, we need to decompose
products of Schur polynomials as given in table 2. The computation of cup-products
on X, can then be deduced from the ones on SB(2, D). Of course, they could also be
computed directly. To avoid lengthy formulas, these cup-products will be given in
tables. It should be understood that the intersection between a row and a column
gives the cup-product between the morphism at the top of the column and the
morphism at the beginning of the row. Moreover, the Morita morphisms M pe: pe;
(resp. the restriction morphisms Respe: pe; will be abreviated as M; ; (resp. R; ;).
Thus, for example, in table 3, we can read

Poi0 (37)~<P02,2 (y) = Yo1° MD@S,D(J:'Z/) —Poy11 © 1{(35[)‘8‘7’,17®2 o MD®57D®3 (ny)
+90<72,2 © P”eSD‘X’S,D@’4 (:z:y)

a || 1,0 |1,1 |20 | 2,1 | 2,2
1,0 || 02,0 02,1 | 0300,0 — 02010 0400,0 — 02011 0401,0 — 03011
+o1,1 +0102,0 + 02,1 +o102,1 + 02,2 +0102,2
1,1 02,2 | 0400,0 — 02011 0401,0 — 0301,1 0402,0 — 03021
‘01021 +0102,2 +0202 2
2,0 010300,0 010400,0 + 0401,0 0104010
+(03 —0102)01,0 | —010201,1 +(—0103 +04)01,1
—0201,1 +(0f — 02)02,1 +(0? — 52)02,2
+(U% — 02)02,0 ‘01022
+0102,1 + 02,2
2,1 010401,0 0104020
+(—0o103 +04)o1,1 | +(—0103 +04)02,1
+0402,0 — 03021 +(o102 — 03)02,2
+U%0’2,2
2,2 0200‘0 — 0304010
+(—0204 + 03)o1 1
‘0204020
+(—0203 +0104)02,1
+(05 — 0103)02.2
TABLE 2. Decomposition of the products of Schur polynomials

3. TOPOLOGICAL FILTRATION

In this section, we shall compute part of the topological filtration of the quadric
X,. For this task, Panin’s decomposition cannot be used directly, since it does
not respect the topological filtration. We shall therefore introduce new morphisms,
which map to the different levels of the filtration. The definition of those morphims
uses the reduced norm. Since it is only defined for Ky, K7 and Ko, those morphisms
will only be defined for those K-theory levels.

Let K;XU) be the group of level j in the topological filtration of K;X and let
K; XU/+0 = KiX(j)/KiX(j“).
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H 0,0 [ $1,0 [ P1,1 [ 2,0 [ $2,1 [ $2,2 |
$0,0 0,0 ¥1,0 $1,1 $2,0 $2,1 P22
©1,0 P11 ®2,1 | po,0R1,0M31 ©0,0M4,0 ¥1,0M5,1
+¥2,0 —6¢1,0M3,1 —6p1,1 M4 2 —¢1,1R3,2M5,3
+@2,0R3,2 +v2,1R4,3 +v2,2R54
+¥2,1 +p2,2
®1,1 p2,2 | Po,0Ma,0 ®1,0Ms5,1 @2,0Mg, 2
—6¢p1,1 My 2 —p1,1R3,2M5 3 —p2,1R4,3Mg 4
+¢2,1R4 3 +@2,2R5.4 +6p2 2Mg 4
©®2,0 16¢p0,0Ma4,0 wo0,0R1,0M51 ¢1,0R2,1Mg 2
—5¢1,0R2,1My4,2 | +¢1,0Ms5,1 —15¢1,1 Mg 2
—6p1,1 M4 2 —6¢1,1R3,2M5,3 | +10p2 2Mg 4
+10p2,0My 2 +10¢2,1 M5 3
+@2,1R4,3 +@2,2R5,4
+¥2,2
P21 »1,0R2,1M6,2 @2,0R3,2M7 3
—15¢1,1Me,2 —15¢2,1M7 3
+@2,0Ms,2 +5p2 2R5,4M7 5
—p2,1R4,3Ms6,4
+16p2 2Mg 4
P22 ©o0,0Msg,0
—@1,0R2,1Msg 2
+10¢1,1 Mg, 2
+6p2,0Msg 2
—5¢p2,1R4,3Msg,4
+20p2 2Msg 4
TABLE 3. Cup-products for the K-theory of SB(2, D)
[ #1 | o1 | ®r2 | .3 | | #ny
P1 P1| Pry | Pr2 #r3 Pn_ L
Pry Pr2 | Pr3 »1Ms.0 ¢ R3,2Ms,3 pr Ra,2
+26p, Mg 2 7‘PU+M5,1 —Pn_
_16LPT%M8,4
+6¢T§M8,6
—pn_RaszMs 4
—¥ny R2,1Mg 2
©.2 »1Ms0 6¢p1Mio0,0 —¢r R32M73 | —pr;R32M53
+26p- Mg 2 +125p,, M1o,2 +90,.%R5,4M7,5 +¢,.%R5,4
—16%.%1\/18,4 —70%.%1\/110,4 +@n_Mrz1 +n, Ms1
+6LPTL;,M8,6 +2085,.%M10,6
—¢n_Ra3Msa | —5py_Ra,3Mio,a
—¥ny R2,1Msg2 | —5¢n, R2,1Mio,2
e, 201 Mi2,0 #ry R3,2Mg 3 #ry Ra,2M7 3
+3660,; M12,2 —Apr’i)RsAMQ,S —Lp,r%Rs,zLMzs
—19599,,.%1\/[12,4 +¢,,,%R7,6M9,7 +90,,.%R7,6
+5099,,.{:M12,6 —n, Mo 3 —pn_Mz73
—15¢y_Ra 3Mi2.4
—15¢n, Ra,1Mi2,2
o 17¢r Mg 2 —p1My o
_6S0T%M6,4 +6p My 2
+¢,3 —p,2
1 1
—¥ny R2,1Me,2
Pny 1707
—680,,.%1\/[2,4
-‘rsa,.%MG,z
—Lﬂn_Iz,a

TABLE 4. Cup-products for the K-theory of X,

3.1. Computation of KZ-Xél) and KiX,§2) (1=0,1,2).

Definition 3.1. For i = 0,1 and 2, we shall define

Yo, ¥y, g, ¥3:

!
0>

I /.
13\112'

KiF—>Kin
KiF—>K1'Xq/
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by
Uy = ¢
Uy = ¢1 — ¢r, © Mg pe:
Uy = @1 — 2, o Mp pez + @(,)2 0 Mp pes
U3 = p1 — 3¢pr, o Mp pez + 3¢(,)2 © Mg pes — @) © Mp pes
‘1’6 = v
Ui = o1 — ¢ 0 Mp pe2
WY =1 — 2¢,r o M pe2 + ()2 © Mp pe1
and
\112/, \:[12//7 \113/ . KlDHKZXq
\11/2/ : KZD—>KZXq/
by

\IIQ/ = 10 Nrd —+ ®r, © MF,D®2 oNrd — QDTH_
\:[12// = 10 Nrd + 907”1 o MF7D®2 (¢] Nrd — 80777 e} MD7D®3
U3 = 1 0Nrd + 4, o Mp pe2 o Nrd — ¢(1y2 o Mp pes — ¢y, — ¢y 0o Mp pes
Wy, = 1 o Nrd + ¢, 0o Mp pe2 o Nrd — ¢,
Remark 3.2. Note that W3 = Wy + Worr — Uy o Nrd.
These morphisms are related in the following way.

Lemma 3.3. Recall that ¢ denotes the inclusion X, — X,. For j = 0,1,2 and 2/,
i*W; = W) Moreover, i*W3 = —2W) + W), o lp p and "Wz = 20}, — W5 o Nrd.

Proof: This follows from definition 3.1 and equalities (15). O

Lemma 3.4. Let k, k' € K;F and d € K;D.
For j =0,1,2,3, ¥o(k).¥;(k') = ¥;(k.k)
For j = 0,1,2, W)W (K') = W' (k)

Moreover, \Ill( ). Uy (K ) = Uy(k.K)
Wy (k). Wi (k) = Uy (k.k)
Uy (k). VoK) = U(k.k')

U1 (k). Vo (d) = W1 (k). War(d) = Wy (k.d)

Proof: This follows from the definition of these morphisms and table 4. O

Theorem 3.5. Fori =0, 1 and 2, the morphisms

Uog DU DV D YU3H Vo @ Wor : KZ'F@4 D KiD@2—>Kin
Ug DU DYy D U3DH Uy @ Wy KiF®4 &5) KiD@2—>Kin
U, U@V, oW, : K F® o K,D—K; X,

are tsomorphisms.
Proof: The first morphism is the composition of the morphism
P1 D Pry Dz D3 Oy, Opp_
K,F o K;D®?*© K;D** ¢ K;D®® © K;D®*' © K;,D®*—K,X,
which is an isomorphism and the isomorphism
K,F% o K, D®?>—K,F ® K;D®? @& K;D% & K;D® ¢ K,D®' & K;D®3

given by the matrix

Id Id Id Id Nrd Nrd

0 _MF,D®2 _2MF,D®2 _3MF7D®2 MF,D®2 o Nrd MF7D®2 o Nrd
0 0 MF,D®4 3MF,D®4 0 0

0 0 0 ~Mppes 0 0

0 0 0 0 —Id 0

0 0 0 0 0 —Mp pes
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o (0,0) | (1,1) | (2,0) (2,2) (1,0) (2,1)
|| 0 2 2 4 1 3
ST 1 NT [ S2T | N2TeANT| T [ TeoA T
dim S¢J 1 1 3 1 2 2
TABLE 5.

This matrix is invertible because it is upper-triangular, with invertible morphisms
on the diagonal. The result for the second morphism is then a simple consequence
of Remark 3.2. For the last morphism, the same kind of proof as for the first one
applies. O

Theorem 3.6. Fori=0,1,2 and for j =0,1,2,3, ¥; maps to KiXéj).
Before proving this theorem, we shall obtain a simple corollary.
Corollary 3.7. Fori=0,1,2 and for j =0,1,2, ¥ maps to };X.).

Proof: This is a consequence of Lemma 3.3, since ¢* preserves the topological
filtration. O

Let us now prove Theorem 3.6. First of all, the theorem reduces to the fact that
Uy ([F]) lies in KoXél) ([F] is the class in Ko F of F itself). Indeed, the cup-product
by [F] is the identity on K;F or K;D, thus the formulas of Lemma 3.4 imply the
other cases since cup-products respect the filtration. In order to prove that ¥y ([F])

is in KOXél), we shall make a few computations in the split case (X, = Xp,). We
make use of elements of KgXj, whose codimensions are known. These elements
come from the embedding of X} in P?, and they generate KoX}, (see [9, §3.2]).
Let Q be the class in KgX} of a rationnal point, H the class of a hyperplane
section ((P* N X}) C P%), D the class of a line (P! N X}) C P5). These classes
are independant of the choice of the embeddings of the projective spaces in P°.
Let Py (resp. P2 be the class of the intersection of X}, and the projective plane
wy = wy = wg = 0 (resp. we = wy = ws = 0) in the basis chosen in section 2.4.
These two classes are different in Ky X};. We will also denote by Z the class of the
structural sheaf of Xj,. By construction, the codimensions of Z, H, P1, P, D and
Q are respectively 0, 1, 2, 2, 3 and 4. To keep the notation simple, we will denote
identically the images of these elements in KoGr(2, V) by the isomorphism g*. The
cup-products between these elements are given by the formulas (see [9])

(16)

H>=P1+Py—D, HPi=HPo=D, Pi°=P>=0Q, P1.P, =0, HD = Q.

All the other ones are zero for codimension reasons. The subquadric X}, of equation
2y +xhyb+(2')? = 0 includes in the quadric X}, of equation x1y; +x2y2+3y3 = 0
by 1 = 2, 11 = ¥}, x2 = xh, yo = y5 and x3 = y3 = 2’, so H' = i*H is the class
of X;y NP3, D =¢*P; = i*Py is the class of X NP, @ = 4*D is the class of a
rationnal point and ¢*Q = 0. The non trivial cup-products between these elements
are

(17) (H)?=2D' -9, H'D =Q.

We also introduce elements of KoGr(2,V) which are classes of vector bundles. Let
J be the canonical bundle of Gr(2, V) - the fiber above a point is the subspace of V'
that this point represents. Let S be the Schur functor of multi-index . We shall
use the vector bundles S*7, where o = (0,0), (1,0), (1,1), (2,0), (2,1) and (2, 2).
Table 5 shows their values in terms of symmetric and exterior powers of 7. By
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definition, the morphism ¢4, , (resp. 1 = ¥, @] = ¥g) is equal to the pull-back
along the structural morphism of Gr(2,V) (resp. Xp, Xp/). Of course, this is also
true in the non-split case. In the following, we will simply replace ¢, (k) (resp.
v1(k), o(k), ¢ (k), ¥((k)) by k, to shorten the formulas.

Lemma 3.8. In the split case, ¢,, © Mp peial (k) = £.5%F. In particular, ¢, o
Mg pelal ([F]) =57.

Proof: From the cup-products in table 3, we get @5, © Mg peial(k) = k.¢q, ©
Mg poiel ([F]). The identification of ¢, (Mg peial([F])) and S*J easily follows
from the definition of ¢, (see section 2.3). O

The Pliicker embedding Plk of Gr(2,V) in P® sends a subspace U of V to AU
in A2V, so Plk*(Ops(—1)) = A%2J. Since Plk o f = Pl (see Lemma 2.12), the
classical equality Ops(—1) = Ops — H pulls back to KoX}, as
(18) NJ=T-H
Since H = 7 — Ox,, (—1), it can also be defined in the non-split case by the same
formula. Its codimension is 1 - even in the non-split case - since it is in the kernel

of the rank application (on vector bundles). From the definition of ¥y, Section 2.5
and Lemma 3.8, we get

U1([F) = 01([F]) = @, ((F]) = £* 000 o ([F]) = f* 00, , ([F]) =T = AT = H.
The equality ¥;([F]) = H has to be true in the non-split case since the extension
of scalars is injective on K (see Remark 2.3), so we have proved ¥4 ([F]) € KOXél)

and Theorem 3.6. We shall establish the following (which is a little more difficult):
Theorem 3.9. Fori=0,1,2 and for j = 2,3, ¥V, maps to KiXéj). Wor maps to
K xP?.

As for Theorem 3.6, we have a simple corollary.
Corollary 3.10. Fori=0,1,2, W}, maps to K; X, .

Let us now prove Theorem 3.9. It reduces to the case of Wy since we have
Uy ([F]).Wo (d) = Us/(d) (see Lemma 3.4) and War(d) = s (d) — Yo (d) + Py 0
Nrd(d) (see Remark 3.2).

By definition, the bundle J fits into an exact sequence

0—T —V ® Ogra,v)— T —0
and the dual sequence is
0—T"*—V ® Ogr2,vy— T *—0.

Let ¢ be an element of V* whose kernel is < v1,v2,v3 > (these are the elements of
the basis of V' chosen at the beginning of section 2.4). Such an element gives rise
to a section s of J* through the composition

PR- * *
Ocrizvy — V' ® Ogrev)y—J

The zero locus of s is the set of points z such that

$.1d
Te—V ® OGT(27V),(E - OGT(27V),(E
is zero, that is if 7, in V' is included in ker ¢. Through the Pliicker embedding, this
condition becomes A%27, C A2ker ¢. Since A2ker ¢ =< v1 Avg, v1 AV2, V1 AUz >=<

w1, w3, ws >, we obtain the subvariety ws = wy = wg = 0 whose class is Py in
I(()CJ’I“(Q7 V)
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The Koszul exact sequence (see [5, IV, §2]) for the bundle J (of rank 2) and the
section s is
0—>A2j—>J—>OGT(27V)—>(’)S—>O
where O is the structural sheaf of the zero locus of s. Thus J = ST +7 —P; in
KoGr(2,V). The cup-products (16), the table 5 and the equality S 7 + S?°7 =
(S1:9)2 give

§007 =T
Sl’oj ZQI,H,’Pl
Sy =T-H

5207 =3T-3H-3P 1 +P+D+9Q
S21T =2T —3H+Ps
S227 :(I—H)Z:I—2H+P1+P2—D

From (12), we get

©(ry)i © M pezi (k) = f*(‘p(al,l)i)(k)
= (k). (T -H)")
=k(ZT-H)
¢n, oMpp(k) = f* (o, ,(k))
= f*(k.(2Z —H —P1))
=k.(2Z —H —P1)

and

*

Poy1 © ReSD®3,D®2 o 1\/[F,D®3 (k) — Pos © 1v[F',D®3 (k))
“(Po1, 0 4Mp pe2 (k) — @0, , © Mp pes(k))

P OMF,D®3(k) ! E

!

f*(k.451’1j — k.S2’1j)
(

k

“(kA(Z —H) — k.(2T — 3H + P2))
(2T —H —Pa)

Thus, in the split case,

(19) o(k) = kI, Ui(k) = kH, Uy(k) = k.H2, Us(k) = k.H3,
\1’2/ e} MF,D(k) = k.Pl, \1’2// o MF,D(]{?) = k.PQ, \113/ (ki) =k.D.

and applying ¢*

(20)  W(k) = kI, Wy(k) = kH, Uy(k) =k.(H')?, WU oMpp(k) = kD

In particular, this proves that when X}, is split, ¥, maps to K()X(gQ)7 so Theorem
3.9 is proved in this case. We shall now establish the result in the non-split case.
Let K be the function field of the Severi-Brauer variety of D. It has two important
properties. First, it splits D (and equivalently X, ), second, K> F injects in KoK (see
[26, §5]). Instead of K, we could use any other field that has these two properties.

Definition 3.11. For i = 0,1,2, using the Brown-Gersten-Quillen spectral se-
quence (see [19] or [23]), we define &, &1, & and & as the compositions

o KiF—K; Xg— K; X"V — H(X,, K))

& KiF—K Xy —KX\/" < H(Xy,K))
& KGF T KX —K XM — HY (X, Kig1)
£ KGF 2, KiX;})_)KiXé/l/Q) — H'(Xy,Kit1)

Proposition 3.12. The morphisms &, &1, &) and & are isomorphisms.
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Proof: We shall only handle the case of €o and &, since the same proof can be
applied to &) and &]. In the split case, KiX,(L]) is generated by the cup-products of
K;F with the elements of (Z,H, P1, P2, D, Q) whose codimension is greater than j
(see [9, §3.2]). Thus

KiF—K;X,;— K X"V
and
KF - KX — Kk x (12
are isomorphisms. Furthermore, in the split case, the B.G.Q. spectral sequence
degenerates, so the inclusions

KX — HY(X,,K))

and
KXV — HY (X, Kig1)

are isomorphisms. Hence, &y and &; are isomorphisms.

In the non-split case, (see [7, §5.3, §5.4 and Corollary 8.6]), &y et & are isomor-
phisms after localisation at 2. Their kernels and cokernels are therefore 2-torsion
free so by a transfer argument to a degree 4 extension that splits X, they are zero.
O

Corollary 3.13. For X = X, and X = Xy, fori=0,1,2 and for j = 0,1, the
morphism
K XU s HY(X, iy )

is an isomorphism, as well as the composition
K F 2, ), X0, X G340

Corollary 3.14. For X = X, and X = Xy, fori = 0,1,2 and for j = 0,1,
K; XU/ ipjects in K;(X)P/7.

Since ¥y maps to KiX,EQ) in the split case, its image in KiX(gO/l) (and then
KiXél/Q)) has to be zero. This is also true in the non-split case by extension of
scalars to K and corollary 3.14. Thus Theorem 3.9 is proved.

Corollary 3.15. Fori=20,1,2,
(1) the morphism U1 @& Uy ® Uor & U3 & Uy induces an isomorphism between
K.F & K;F & K;D & K;F & K;D and K; X",
the morphism Wo @ Vo O W3 D V3 tnduces an 1somorphism between K;F' @
2) th hism ¥ v v s ind ) hi b K, F
K;D & K;F & K;D and K;X\?,
the morphism DOV DYV, nauces an tsomorphism between IS; 1 @ K £ D
3) th hism ¥} @ U \If’2'd ) hism bet K, FeK,F
K:D and K; X\,
the morphism @ V5, mnduces an isomorphism between K;F & K;D an
4) th hi v, \If’Q'd ) hi b K, F® K;D and
KAX(Q)
1hgl -
i the split case, V3 @ Vs induces an isomorphism between K;F & K;
5) in th li \J WUy ind . hi b K,F & K;D
v (3)
and K; X

Proof: Points 1, 2, 3, 4 and 5 are true in the split case because of (19) and
points 1, 2, 3 and 4 directly follow in the general case from corollary 3.14 and the
fact that K, F injects in K;K. O
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3.2. The group K1X54). Let X be a smooth projective variety of dimension d
over F. We shall now use the norm map N : HY(X, K;4)— K;F. It commutes
with the extension of scalars for a field extension and with the norm for finite field
extensions.

Proposition 3.16. The morphism N has the following properties.

(1) Let 7 be the structural morphism of X and p : HY(X,Kqri) — K;X the
morphism given by the B.G.Q. spectral sequence, then N& = m, o p.

(2) Let ¢ be a quadratic form and L an extension of F such that Xy has an
L-rationnal point, then the morphism

Nk, : HY((Xg) 1, Kap1)—K1L

s an isomorphism.
(3) Let X(L) be the set of L-rationnal points of X. The morphism

D Npp: @B HUXp Kap))—HY (X, Kas)
X(L)#2
18 surjective.
Proof: 1. This is a consequence of the functoriality of the B.G.Q. spectral

sequence with respect to proper morphisms. 2. See [2, Example 2.3. 3]. This can
be seen easily on the Gersten complex. O

Let ST'(¢q) be the special Clifford group of ¢ and Spin(g) the Spin group, kernel
of the spinor norm sn : ST'(¢)—F™.

Theorem 3.17. (see [8, Proposition 4.2 and Corollary 4.3]) The following diagram
is commutative and has exact rows and columns.

1 1
1 — Spin(q) D* — F
1 ——SI(q) — D* x F* > F~
K i
1

where w(d, f) = Nrd(d)/f?.

This diagram is functorial with respect to the extension of scalars, thus the
similar diagram of algebraic groups has the same properties.

In [2], Chernousov and Merkurjev define a morphism « : SI'(¢)— Ao (X, K1)
for any quadratic form ¢ over an infinite field F' of characteristic not 2. In our
case, ¢ is of dimension 6 so Ag(X,, K1) coincides with H*(X,, K5). This morphism
commutes with the extension of scalars for any field extension and with the norm
for finite field extensions.

Proposition 3.18. (]2, Proposition 3.5]) The morphism « has the property that
N}(q o = sn.
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For an algebraic group G, let RG denote its subgroup of R-equivalence (see [2,

§1.1]).

Theorem 3.19. ([2, Proposition 3.5]) The morphism o induces isomorphisms (also
denoted by «)

ST(g)/ RSpin(q) ~ H*(Xy, Ks)
and therefore

Spin(q)/RSpin(q) ~ ker Nx_ .

Theorem 3.20. (see [33] or [2, Theorem 6.1]) The subgroup of R-equivalence of
the group SL1(D) is RSLy(D) = [D*, D*].

The commutative diagram of Theorem 3.17 therefore induce an injective mor-
phism
B :SI'(q)/RSpin(q)—K1D & K1 F

such that ps o 8 = sn, where py : K1 D & K1 F — K F is the projection on the
second factor.

Corollary 3.21. This gives rise to isomorphisms
ker(sn : ST'(¢)/RSpin(q)— K1 F) ~ SK1 D
and
ker(NY, : H (X, KC5)—K 1 F) ~ SK, D
Let us now use these tools to compute K1X§4).
Definition 3.22. For i =0, 1,2, we define the morphism
0: K, Do K, F—K;X,
by
O(d, ) = ¥y (d) — ¥3(f)
Remark 3.23. The morphism O is injective.
Definition 3.24. For i =0, 1,2, let VK;D be the kernel of the morphism
K.Do K;F — KF

(d. f) —  Nrd(d) - 2f.
Proposition 3.25. The diagram
ST'(g)/RSpin(q) - KD & K\ F
| 3
HY(Xg,K5) KX —— K, x Y

s commutative.

Proof:  Proposition 3.16, point 3. and isomorphism « : ST'(¢)/RSpin(q) —
H*(X,,K5) - commuting with Ny, F - prove that the morphism

Y Nyp: @ SI(q)/RSpin(q),—ST(q)/RSpin(q)
X,(L)#2

is surjective. Since all the morphisms in the diagram commute with the norm, the
theorem can be proved in the case where the quadric is isotropic. We shall suppose
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so from now on. In the isotropic case, N&q : HY(X,,K5)— K1 F is isomorphism.
The commutative diagram

HY(Xq,Ks5) — K; X
K\ F

therefore shows that m, induces an isomorphism between K1X54) and K 1 F. Its

inverse 7, ! is the morphism K F -2, Kx, (recall that Q is the class of a rationnal
point of X,). In the diagram

SI'(q)/ RSpin(q) K\D& K\ F

\/

qu ]C5 )C—> KlX(B)

all the triangles are commutative, but we still have to understand what happens
with the right quadrangle. The norms Nﬁ(q, sn and the morphism 7, restricted

to K1X§4) are isomorphisms, so we have to show that 77! opy 03 = © 0 3. The
image of § in K1 D @ K1 F is VK1 D by definition of § and the morphism py re-
stricted to VKD is an isomorphism. Let us compute its inverse ((pg)‘VKlD)_l
KlF—>VK1D

Lemma 3.26. When D is not a division algebra, the composition VK1 D — K1 D &
K\ F ELN K, F has a section s : K1 F—VK;D.

Proof: Since D - whose degree is 4 - is not a division algebra, it is similar to a
quaternion algebra Q). We define t = Mg p o Irq. Thus

NI‘dDOt :NrdDoMQD OIRQ
= NrdQ e} IRQ
= deg(Q)IdK1F
= 2ldg, p

The morphism s = (¢,1d) : K1F—K;D & K1 F factors through VK;D and is
therefore the desired section. O
This section has to be ((p2)jvk,p) " (since it is an isomorphism).

To check that 7' o py 0 3 = © o 3, it is then sufficient to prove that 77! =
O o ((p2)jvk,p) ' We have the following equalities:

©o ((p2)jvk,p) '(k) =¥z oMg polpg(k) — Vs(k)
= V3 oMq,p o lpq(k.[F]) - ‘1’3(k [F])
= Wy (k.Mq,p o Ipq([F])) — ( [F])
= k(U3 o Mg, p o Ipq([F]) — V5([F]))

We shall now show that W o Mg p o Irq([F]) — U3([F]) is the class in Ko X, of a
rationnal point. Since the extension of scalars is injective on KyX,, we can extend
the scalars to an extension E of F' such that X, is split - and therefore so is D.
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Then

Extpp(Vs o Mg p o Irq([F]) — Vs([F]))

= \113/ o MQE;DE [¢] IE,QE ] EXtE/F([F]) — ‘113 o EXtE/F([F])

=Wy oMq,,py 0 IE,QE([E]) — U3([E])

= Vs 02Mp,p,([E]) — Us([E])

=23 o Mp,p,([E]) — Us([E])
and in the split case, we already now that W3 o Mg p is the cup-product by D and
that U3 is the cup-product by H? (see (19)). As 2D — H3 = Q, we get

O o ((p2)vk,p) ' (k) =k.Q

This ends the proof of Proposition 3.25. O

Corollary 3.27. The morphism © induces an isomorphism VK1 D — K1X(§4).

Proof: This follows from the fact that a is an isomorphism and that § and ©
are injective. O

Corollary 3.28. The morphism H*(X,, K5) — K1X§4) 18 an isomorphism and
the differential d§’74 is zero in the B.G.(Q. spectral sequence.

We shall now prove the result for which we needed corollary 3.28.

Proposition 3.29. Let X = X, or X = X.

1) In the B.G.Q. spectral sequence for X, the differential dy ™3 is zero.
(1) p q : 2
(2) Ky X?/? ~ H*(X,Ky).

Proof: Point 2 is a consequence of point 1 and, for X, corollary 3.28 (dg’_4

is trivialy zero for X,). Let us therefore prove point 1. Since all the differen-
tials are killed by 4 by a transfer argument, we can and will assume that all the
groups are localized at the prime 2. The coniveau spectral sequence in étale motivic
cohomology in weight 3 gives the surjection

px ¢ HE(X,Z(3)) — HO(X, K3")

The spectral sequence defined in [7, Theorem 4.4], that we have already used in
section 1, yields the exact sequence - here is the place where we use the localization
at 2 -

0—HE(F, Z(3))— HE (X, Z(3))— H, (F, Z(2))—0
in which H3,(F,Z(3)) ~ K} (F) and H},(F,Z(2)) ~ K3(F)inqs. This exact se-
quence is split by a section given by the multiplication by a hyperplane section H.
The diagram

0 HE(FZ(3) — (X Z(3) = Y (F,2(2) — 0
K (F) —— HO(F, K1) — HO(X,K}")

is commutative by functoriality of the spectral sequence. Again by functoriality,
we have the commutative diagram

HE(F(X),Z(3)) <—— H3(X,Z(3))

pF(X)l lpx

K3'(F(X)) == H°(F(X), K3") <——H (X, K3")
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where the inclusion is by definition. Thus, px o s = 0 for H is zero at the generic
point. The top row is exact, so by diagram chase, the morphism

K3 (F)—H"(X,K3")
is surjective. Another diagram chase in the commutative diagram with exact rows
0 - K37 (F) K3(F) K3(F)pg ——0

| lg ;

0—> HO(Xa Ké\/[) - HO(X7 IC3) - HO(X7 (’C3)nd)

yields that the morphism K3(F)— H°(X, K3) is surjective. Since it factors through
K3(X), its composition with d3~* has to be zero, therefore d3* is zero. O

4. THE GROUP SKsD

We shall now collect the results obtained in the preceding sections to prove the
main result of this article (see introduction). As in section 3, let K be the function
field of the Severi-Brauer variety of D.

From corollary 3.15, points 3 and 4, Theorem 3.9 and corollary 3.10, we get the
commutative diagram

U,
KoF @ KyD 24 g, x (219

i*

Ve,

FoF & KD = [ x5/

where Uy, Uy, \IT’2 and E are just the the morphisms Uy, ¥o, U, and U), fol-
lowed by the projection to the quotient. Since the reduced norm commutes to the
extension of scalars and Ky F injects in KoK, SKoD ~ ker(KoD — K3Dg). We
therefore get a commutative diagram

SKyD —> ker(FK, XM — Ky (X,) 3/

ker(K> X — Ka(X) %),

Furthermore, the top horizontal arrow is surjective because ¥y @ Wy is an isomor-
phism in the split case (see corollary 3.15, point 5). Proposition 3.29 yields that
ker(FKo X5/ — Ky (X)) ~ ker(H2(X,, K4) — H2((Xy)k,K4)) and (4) is an
isomorphism between the latter and ker(H®(F,Z/2) — H®(F(q),Z/2)) when F
contains an algebraically closed subfield. So we already have the exact sequence

(21) SKyD—H3(F,2,/2)—H' (F(q), Z,/2).
The following lemma is well known.

Lemma 4.1. Let ¢ and ¢’ be quadratic forms such that ¢ becomes isotropic over
F(¢'), then there is an inclusion (inside H™(F,Z/2))

ker(H™(F,Z/2) — H"(F(¢),Z/2)) C ker(H"(F,Z/2) — H"(F(¢'),Z/2))
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This yields
ker(H®(F,Z/2) — H°(F(q),Z/2)) C ker(H®(F,Z/2) — H°(F(¢),Z/2))
and therefore
ker(KoX /3 — Ky(XP/¥) k) = ker(Ka X — Ka(Xy)%'Y).
Thus, the morphisms m and m’ have the same kernel.

Lemma 4.2. For ¢ = 0,1,2, let p; : K;F & K;D — K;F be the projection on the
first factor. Then the composition

‘IJ’ @‘I/l, —1
H*( Xy, K3yi) — KiXéé)(—> KiXé/Q)( 2 )KiF ® KD 2> K,F

is minus the norm map Nx ,. It becomes an isomorphism in the split case.

Proof: This can be checked after extension the scalars to K. Using Propo-
sition 3.16, point 1, the result follows from equalities (20), (H')? = 2D’ — Q/,
m(D') = 0 and 7, (Q) = [F]. The norm becomes an isomorphism in the split case

because the B.G.Q. spectral sequence degenerates, thus H3 (X, K;) ~ KiX;?),

and KZ-X(E?) ~ K,;F by the map given above (see the proof of Proposition 3.12). O

Since the norm N X, 1s an isomorphism in the split case and since K> F' injects
in K>K, we can identify ker Ny , with ker(H3(X,Ks) — H*((Xy) K, Ks5)), and
we get the diagram with exact rows

H3( Xy, KCs) X)) ——— KXY ———0

| | |

0 —= H*(Xg)1, Ks) —= Ka(X,) ) —= Ka(X,) /Y —= 0.

The kernels of the vertical maps are therefore related through an exact sequence
' 2/3 2/3
kerNy,, —— SKpD —" > ker(K> X/ — Ka(Xy) ")

which, pasted with Sequence (21), gives rise to the desired exact sequence, in the
case of a perfect field.

In the case where F' is not perfect, we first obtain the sequence for a perfect
closure F), of F, then observe that all the maps in the sequence are defined for any
F, except maybe the one from SK>D to H®(F,Z/2), which uses section 1. But
since H*(F,Z/2) = H?(F,,Z/2), we can define this map too, and it is easy to show
that it goes to the kernel of the extension of scalars to F(g). It remains to check
that the sequence obtained for F' is exact. This is obtained by a transfer argument:
the groups ker Ny, SKoD and H®(F,Z/2) are 2-torsion, so a diagram chase gives
the result, since every finite subextension of F, is of degree prime to 2.

Remark 4.3. By the same method applied to K7, Rost’s theorem can be established
(in this case, ker Nx,, is zero, by another theorem of Rost).
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