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Abstract. M. Rost has proved the existence of an exact sequence relating the

group SK1 - kernel of the reduced norm for K1 - of a biquaternion algebra D
whose center is a field F with Galois cohomology groups of F . In this paper,

we relate the group SK2 - kernel of the reduced norm for K2 - of D with Galois

cohomology of F through an exact sequence.

Introduction

To understand the K-theory of central simple algebras, one of the most useful
tools is the reduced norm. It is defined for K0, K1 and K2. It has been proved
(see [14, Proposition 4]) that it cannot be defined for K3 and satisfy reasonable
properties. The definition of the reduced norm is trivial for K0, elementary for
K1, but much less elementary for K2. A definition for K2 was given by Suslin in
[26, Corollary 5.7], which uses the highly non trivial result that the K-cohomology
group H0(X,K2) is isomorphic to K2F when X is a complete smooth rational va-
riety over the field F (see [26, Corollary 5.6]). The kernel of the reduced norm for
Ki, i = 0, 1, 2, is denoted by SKi and is difficult to compute for i = 1, 2 (it is always
zero for i = 0). The first result on SK1 was obtained by Wang in 1949. He proved
in [34] that SK1A is zero when the index of A is a product of different prime num-
bers. Whether SK1 was always zero or not was then known as the Tannaka-Artin
problem. No example of an algebra with nonzero SK1 was found until 1975, when
Platonov gave the first such example (see [18]). In the eighties, a new approach
has been initiated by Suslin, which is to relate SK1 with Galois cohomology of the
base field. Quite a few theorems were obtained in this direction (see [27], [13], [14]
and [15]). The most explicit of these results is a theorem of Rost who proves the
existence of an exact sequence 0 → SK1D → H4(F, µ2) → H4(F (q), µ2) when q is
an Albert form with associated biquaternion algebra D. Since D is of index 4, it is
the simplest case not covered by the theorem of Wang.

About the group SK2, much less is known. Merkurjev has shown in [12] that
SK2 of a quaternion algebra is always trivial, but no would-be analogue of the
Wang theorem is known. Once again, the simplest case when this group can be
non-zero is the case of a biquaternion algebra. It is worth noting that an explicit
biquaternion algebra for which SK2 is non zero can be obtained in the following
way. First, use Rost’s theorem to obtain a biquaternion algebra with a non zero
element x in SK1D (see for example [14]). Then, the cup-product of x by t in
K2D(t) is non zero by residue. Nevertheless, I believe it is of interest to continue
Suslin’s approach, that is to relate SK2 with Galois cohomology. This is the subject
of the present work. The main result in this paper is the following, which is an
analogue of Rost’s theorem for SK2.

Main Theorem. Let F be a field of characteristic not 2, containing an alge-
braically closed subfield. Let D be the biquaternion algebra

(
a b
F

)
⊗

(
c d
F

)
. Let q be

1
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the Albert quadratic form < a, b,−ab,−c,−d, cd > and q′ a codimension-one sub-
form of q. Let Nq′ : H3(Xq′ ,K5) → K2F be the usual norm map in K-cohomology
(see [20]). There is an exact sequence

ker Nq′−→SK2D−→H5(F,Z/2)−→H5(F (q),Z/2)

The proof of this result is divided into four parts. In the first part, computations
are made using spectral sequences in motivic cohomology, in order to identify spe-
cific K-cohomology groups with Galois cohomology groups (see section 1, equality
(4)). In the second part, we first exhibit an isomorphism between the projective
quadric Xq of an Albert form and the generalized Severi-Brauer variety SB(2, D)
of the associated biquaternion algebra D (see theorem 2.13). This isomorphism
ultimately comes from the exceptionnal isomorphism between SL4 and Spin(3H),
where 3H is the orthogonal sum of three times the hyperbolic form < 1,−1 >. We
then use Panin’s decomposition of the K-theory of projective homogeneous varieties
to decompose the K-theory of these two varieties and to pass from one decompo-
sition to another using the previously described isomorphism. We also handle the
functoriality of the decomposition along the natural morphism Xq′ → Xq where
q′ is a codimension one subform of q. In the third part, we partially compute the
topological filtration of Xq and Xq′ . To fulfill this task, we use the isomorphism
described in part two. Indeed, part of the topological filtration is easy to compute
on SB(2, D), which is a twisted Grassmannian, because we can use the theory of
Schubert calculus (see section 3.1), but another part of the filtration is easier to
compute on the quadric, because we can then use some results of Chernousov and
Merkurjev on R-equivalence (see section 3.2). Finally, in the last part, we use the
results of parts one, two and three to obtain the main theorem.

Acknowledgments. Most of the results of this article are part of a Ph.D. thesis,
supervised by Bruno Kahn. The author would therefore like to thank him for
introducing him to the subject and for his help and advice. Philippe Gille should
also be thanked for several helpful discussions related to algebraic groups. Finally,
the referee has pointed out new results in the literature to get rid of a characteristic
zero assumption in a previous version of the main theorem. May he be thanked for
his useful suggestions.

Notation. We now introduce some notation that is used throughout the article.

Let F be an infinite field of characteristic not 2 and Fsep a separable closure
of F . The assumption that F is infinite is needed for the use of R-equivalence
in section 3.2, but it is not a real restriction since there are no nontrivial central
simple algebras over finite fields. The characteristic not 2 assumption is required
because of some properties of quadratic forms. We usually use F as the base field,
whenever a base field is needed.

Varieties. By a variety over F , we mean a separated integral scheme of finite type
over SpecF . The field of functions of an integral scheme X over SpecF is denoted by
F (X). Let K be an extension of F , XK denotes the variety X×SpecF SpecK over K.

Quadratic forms. By a quadratic form, we mean a non degenerate (regular)
quadratic form. Let ϕ be a quadratic form over F . We denote Xϕ the corresponding
projective variety (defined by the equation ϕ = 0). The field F (Xϕ) is abbreviated
in F (ϕ). If K is an extension of F , qK denotes the quadratic form obtained by
extension of scalars from F to K.
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The letter q always denotes an Albert quadratic form whose coefficients on an
orthogonal basis is q =< a, b,−ab,−c,−d, cd >. The letter q′ denotes a codimen-
sion 1 subform of q.

Cohomology. For a variety X, we denote Hp(X,Kq) (resp. Hp(X,KM
q )) the

K-cohomology groups of X, that is, the cohomology of the Gersten complex of X
for Quillen K-theory (resp. for Milnor K-theory).

The notation Hi(K,Z/m) is used for Galois cohomology of the field K with
coefficients in Z/m. Let Z/m(1) be the Galois module of the roots of unity µm. A
twist (by j) shall mean that Z/m(1) has been tensored by itself over Z j times, as
in Hi(K,Z/m(j)).

Motivic cohomology groups of a scheme for the étale topology whith coefficients
in the ring A over Z, as they are defined by Voevodsky in [32], shall be denoted
by Hi

ét(X, A(n)). The group Hi
ét(SpecF,Z/m(j)) can be identified with the classi-

cal étale cohomology group (and therefore Galois cohomology) Hi(F,Z/m(j)) (see
[32]).

Central simple algebras. We say that a central simple algebra over F is split
when its class in the Brauer group of F is trivial (i.e. when it is isomorphic to a
matrix algebra over F ).

The letter D always denotes the biquaternion algebra
(

a b
F

)
⊗F

(
c d
F

)
. It is easy

to show that the Clifford algebra of the Albert form q is isomorphic to M2(D).
They therefore define the same class in the Brauer group of F . Moreover, one can
prove (see [11]) that D is a division algebra if and only if q is anisotropic, and that
it is split if and only if q is hyperbolic.

Severi-Brauer varieties. A detailed account of Severi-Brauer varieties and
their properties can be found in [1].

Let A be a degree n central simple algebra over F . The variety parametrizing
the ideals of rank mn of A is called the generalized Severi-Brauer variety of A, and
is denoted by SB(m,A) (or simply SB(A) when m = 1). It is therefore equivalent
for A not to be a division algebra and for SB(A) to have a rationnal point. When
A is split, SB(m,A) is isomorphic to the Grassmann variety Gr(m,n).

1. Motivic cohomology

In this section, we assume the base field F to be perfect. We relate some Galois
cohomology groups of F and its extensions with K-cohomology groups of certain
quadrics, using ideas originally described in [7]. These are mainly computations in
spectral sequences involving motivic cohomology groups. To be a bit more precise,
we shall prove the following.

Theorem 1.1. After localizing at 2, setting X = Xq or X = Xq′ and Y = SB(D),
there are exact sequences

(1) 0−→H5
ét(F,Q/Z(4))−→H6

ét(Xq,Z(4))−→K2(F )⊕K2(F )

(2) 0−→H5
ét(F,Q/Z(4))−→H6

ét(Xq′ ,Z(4))−→K2(F )

(3) 0−→H2(X,K4)−→H6
ét(X,Z(4))−→H5

ét(F (X),Q/Z(4))

and they induce an isomorphism

(4) ker(H2(X,K4) → H2(XF (Y ),K4)) ' ker(H5(F,Z/2) → H5(F (X),Z/2)).
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We shall now obtain the exact sequence (1) from the spectral sequence defined
in [7, Theorem 4.4]. This spectral sequence is associated to a geometrically cellular
variety X over a field F (i.e. a variety that is cellular over a separable closure of
F ) and a weight n. We will use it only for the quadrics Xq and Xq′ , in weight
n = 4. In loc. cit, the field is assumed to be of characteristic 0, but this assumption
is only used to identify the E2 terms and the abutment, the construction of the
spectral sequence only requiring the field to be perfect. In fact, the characteristic 0
assumption can also be removed in the computation of the E2 terms and abutment:
a careful check of the proof shows that it is only used in Corollary 3.5 and Lemma
2.2 of loc. cit; Corollary 3.5 is now proved in [6, Proposition 4.11] and Lemma 2.2
(Voevodsky’s “cancellation theorem”) in [30, Corollary 4.10], independantly of the
characteristic in both cases. Note that F still needs to be perfect, though.

The E2 terms of this spectral sequence are motivic cohomology groups of an
étale algebra over F (see [7, §5.1]), which will always be F or F × F in our case:

Ep,q
2 = Hp(Eq,Z(n− q)).

It converges, for the antidiagonals p + q ≤ 2n, to the étale motivic cohomology
group Hp+q

ét (X,Z(n)).
In weight n = 4, the E2 terms have the following properties:
(1) for q < 0, Ep,q

2 = 0
(2) for q > p, Ep,q

2 is uniquely 2-divisible
(3) for q > p and q > 2, Ep,q

2 = 0
(4) for all q, E5,q

2 ⊗ Z(2) = 0 (”Hilbert 90”)
(5) E3,3

2 = 0
These properties are summed-up in figure 1.

Proof: 1. This follows from the definition of the spectral sequence. 2. This
follows from the long exact sequence in cohomology associated to the short exact
sequence 0−→Z−→Z−→Z/2−→0, using the fact that classical étale cohomology
Hi

ét(F,Z/m(j)) = 0 for i < 0. 3. In this case, the groups identify with sheaf coho-
mology in negative degree. 4. See [31]. 5. The complex of sheaves Z(1) is just Gm

in degree 1, so its cohomology in degree zero H0
ét(F,Z(1)) is zero. 2

After localising at the prime 2, we are left with at most two non-zero terms on
the p + q = 6 anti-diagonal (2 and 4 in figure 1). This induces an exact sequence
(all the groups are localized at 2)

0−→E6,0
∞ −→H6

ét(X,Z(4))−→E4,2
∞ .

Let us now compute some of the differentials to relate the E∞ terms with the E2

terms. All the differentials that map to E4,2
2 are zero, therefore E4,2

∞ is a subgroup
of E4,2

2 . The differentials di, i > 3 that map to E6,0
i are zero, as well as all the

differentials coming from E6,0
i , i ≥ 2. The differential d4,1

2 is zero (see [7, Corollary
8.6, a]). If d3,2

3 is zero, we will therefore have an exact sequence

(5) 0−→E6,0
2 −→H6

ét(X,Z(4))−→E4,2
2 .

In fact, d3,2
3 is zero if F contains an algebraically closed subfield. This follows from

Lemma 1.2. Let K3(F )nd be the cokernel of the natural map from the Milnor
K-theory group KM

3 F to the Quillen K-theory group K3F . If F contains an
algebraically closed subfield, then K3(F )nd is divisible.

Proof: Let F0 be the subfield of F of elements algebraic over the prime
subfield of F . Proposition 11.6 in [16] shows that the cokernel of the morphism
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Figure 1. Kahn’s spectral sequence in weight 4

K3(F0)nd → K3(F )nd is uniquely divisible. Since F0 is algebraically closed, K3(F0)
is divisible (see [24] for char(F ) > 0 and [25] for char(F ) = 0) and so are K3(F0)nd

and K3(F )nd. 2

The differential d1,3
2 is zero. All the differentials are killed by 4 by a transfer argu-

ment (the variety becomes cellular after a degree 4 extension). The differential d3,2
2

is therefore also zero because E5,1
2 is zero after localizing at 2. It follows that E3,2

3 =
E3,2

2 . The latter can be idenntified with H3
ét(F ×F,Z(1)) ' K3(F )nd×K3(F )nd if

X = Xq and with H3
ét(F,Z(1)) ' K3(F )nd if X = Xq′ (see [7, Lemma 8.2] for the

computation of the étale algebra F or F ×F involved). Lemma 1.2 implies d3,2
3 = 0

since it is torsion and comes from a divisible group. Hence, sequence (5) is exact.
Identification of the E2 terms yields E4,2

2 = K2F×K2F for X = Xq, E4,2
2 = K2F for

X = Xq′ and E6,0
2 = H6

ét(F,Z(4)) in both cases. The long exact sequence in coho-
mology associated to the exact triangle Z(j) → Q(j) → Q/Z(j) → Z(j)[1] and the
fact that, for i > j, Hi

ét(F,Q(j)) = 0 shows that H6
ét(F,Z(4)) ' H5

ét(F,Q/Z(4)).
Sequence (5) therefore becomes sequence (1) or sequence (2) when specializing X
to Xq or Xq′ .

Let us now obtain the exact sequence (3). We will use the coniveau spectral
sequence for étale motivic cohomology (see [7, Lemma 5.1]) once again in weight
4 and for the varieties X = Xq or X = Xq′ . Again, although loc. cit. uses a
characteristic 0 assumption, F is in fact only required to be perfect for the same
reasons as the ones explained for the previous spectral sequence.

This spectral sequence has the following properties (see [7, §5.1]):

(1) Ep,q
1 = 0 for p such that p ≥ q and p > n, as well as for p > q and p = n,

(2) Ep,q
1 is uniquely divisible for q < p ≤ n,

(3) after localisation at 2, Ep,q
1 is uniquely divisible for p = q < n,

(4) after localisation at 2, En−1,n−1
1 = 0,

(5) after localisation at 2, Ep,n+1
1 = 0,

(6) Ep,q
1 = 0 for p > dimX or for p < 0.

These properties are summed up on figure 2
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Figure 2. Coniveau spectral sequence in weight 4

As in the preceding sequence, we get, after localization at 2, the exact sequence

(6) 0−→E2,4
∞ −→H6

ét(X,Z(4))−→E0,6
∞ .

The group E2,4
∞ can be identified with E2,4

2 and E0,6
∞ ⊂ E0,6

1 , since the needed differ-
entials are evidently zero. The group E0,6

1 can be identified with H6
ét(F (X),Z(4)) '

H5
ét(F (X),Q/Z(4)) and E2,4

2 with H2(X,KM
4 ). When F contains an algebraically

closed subfield, the latter can be identified with H2(X,K4). I reproduce here a
proof of this result by Kahn: it is obvious, on the Gersten complex, that the nat-
ural map ϕ : H2(X,KM

4 ) → H2(X,K4) is surjective. Using the Adams operations
on algebraic K-theory, one can show that the exact sequence

0−→KM
3 (F )−→K3(F )−→K3(F )nd−→0

is split up to 2-torsion. It follows that kerϕ is killed by 2. We have an exact
sequence ⊕

x∈X(1)

K3(F (x))nd−→H2(X,KM
4 )

ϕ−→ H2(X,K4).

Each K3(F (x))nd is divisible (see Lemma 1.2). Since their images in H2(X,K4)
are killed by 2, they are zero.

With these identifications, we get sequence (3) from sequence (6).
The following lemmas are well known.

Lemma 1.3. When X has a rational point,

ker(H5
ét(F,Q/Z(4))−→H5

ét(F (X),Q/Z(4)))

is zero.
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Lemma 1.4. Two forked exact sequences

0

��
A

��

η

  A
AA

AA
AA

0 // A′ //

ξ

  A
AA

AA
AA

B

��

// C ′

C

give rise to a canonical isomorphism ker η ' ker ξ.

Now, Lemma 1.4 applied to sequences (1) (resp. (2)) and (3) gives the isomor-
phisms

(7) ker(H5
ét(F,Q/Z(4))

η−→ H5
ét(F (q),Q/Z(4))) ' ker(H2(Xq,K4)

ξq−→ K2(F )2)

(8) ker(H5
ét(F,Q/Z(4))

η−→ H5
ét(F (q′),Q/Z(4))) ' ker(H2(Xq′ ,K4)

ξq′−→ K2(F )).

It is not difficult to show from the spectral sequences that η coincides with the
extension of scalars.

Lemma 1.5. The quadric Xq′ has a rational point over F (Y ).

Proof: Since DF (Y ) is split, qF (Y ) is hyperbolic (see introduction on central sim-
ple algebras). The quadratic form q′F (Y ) is of codimension 1 in the 6-dimensional
form qF (Y ), so by the Witt index theorem, it is isotropic. 2

This implies that η and therefore ξq and ξq′ are injective over F (Y ). A diagram
chase using the fact that K2(F )−→K2(F (Y )) is injective (see [26]) easily shows that
ker ξ is isomorphic to ker(H2(X,K4)−→H2(XF (Y ),K4)). Thus, the isomorphisms
(7) and (8) become
(9)

ker(H5
ét(F,Q/Z(4))

η→ H5
ét(F (X),Q/Z(4))) ' ker(H2(X,K4)

ξ→ H2(XF (Y ),K4))

Lemma 1.6. The group ker ξ is killed by 2.

Proof: When X has a rational point, this group is zero (see Lemma 1.3), so the
result follows from a transfer argument using a quadratic extension over which q′

(and therefore q) is isotropic. 2

It is worth noting that the following result uses the Milnor conjecture.

Lemma 1.7. The 2-torsion part of H5
ét(F,Q/Z(4)) is H5

ét(F,Z/2(4)).

Proof: The following diagram is commutative.

Hn
ét(F, Q2/Z2(n))

×2 // // Hn
ét(F, Q2/Z2/l(n))

0 // Hn+1
ét (F, Z/2(n))

� � //
� v

))RRRRRRRRRRRRR
Hn+1

ét (F, Q2/Z2(n))� _

��
KM

n (F )⊗Q2/Z2

o

OO

×2 // // KM
n (F )⊗Q2/Z2

o

OO

Hn+1
ét (F, Q/Z(n))

The top row comes from the long exact sequence in cohomology associated to the
short exact sequence

0−→Z/2−→Q2/Z2−→Q2/Z2−→0.
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The left vertical isomorphisms come from the Milnor conjecture ([31]) and the right
vertical inclusion comes from the fact that the canonical map has a section. This
shows the other properties of the diagram. The result is then implied by the fact
that the next map in the top sequence is the multiplication by 2. 2

Finally, the isomorphism (4) is just the 2-torsion part of the isomorphism (9).

Remark 1.8. (see [7, Corollary 6.7 a]) Using the same spectral sequences in weight
3 yields the isomorphism (for X = Xq or X = Xq′)

(10) ker(H2(X,K3) → H2(XF (Y ),K3)) ' ker(H4(F,Z/2) → H4(F (X),Z/2))

without the hypothesis that F contains an algebraically closed subfield. This iso-
morphism was used by Rost to show his theorem, but is obtained by him in a more
elementary way and in any characteristic different from 2.

2. Projective homogeneous varieties

2.1. Panin’s decomposition. The K-theory of projective homogeneous varieties
has been completely computed in terms of K-groups of algebras (Tits algebras)
naturally associated to these varieties. Historically, Quillen, in [19] (1973) first
computed the K-theory of projective spaces and their twisted forms (Severi-Brauer
varieties) using resolutions. Then Swan, in [28] (1985) adapted Quillen’s compu-
tations to quadrics. In 1989, Levine, Srinivas and Weyman computed in [10] the
K-theory of twisted Grassmannians (generalised Severi-Brauer varieties) by de-
scent methods. Panin had similar results around that time, using representation
theory. Finally, in 1994, he gave a general computation of the K-theory of projec-
tive homogeneous varieties using representations of algebraic groups (see [17]). We
shall use this last computation for many reasons. First, it is easier to follow the
functorial properties of these decompositions using Panin’s viewpoint; morphisms
coming from algebraic groups induce morphisms on the decomposition. Second,
cup-products in K-theory are quite easy to understand on Panin’s decomposition,
and they are important to us because they respect the topological filtration. In this
section, we shall therefore show some functorial properties of Panin’s decomposition
which can easily be deduced from [17] as well as the way to compute cup-products.

Let us first recall the settings. Let G̃ be an F -split simply connected semisimple
algebraic group. Let Z̃ be the center of G̃ and Ỹ a subgroup of Z̃. Let T̃ be a
maximal split torus in G̃, and P̃ a parabolic subgroup of G̃ containing T̃ . We shall
set G = G̃/Ỹ and P = P̃ /Ỹ . Let F = G̃/P̃ be the quotient variety and γF the
twist of F by a 1-cocycle γ : Gal(Fsep/F ) → G(Fsep).

For any affine algebraic group H, let RepF (H) denote the exact category of fi-
nite dimensional F -rational linear representations of H and R(H) the associated
Grothendieck group. The tensor product of representations makes it a commuta-
tive ring. The forgetful functor from RepF (H) to the category of F -vector spaces
induces on their Grothendieck groups the morphism dim : R(H) → Z. Let χ

be a character of Z̃ and denote Repχ
F (P̃ ) (resp. Repχ

F (G̃)) the full subcategory
of RepF (P̃ ) (resp. RepF (G̃)) whose objects are the representations on which Z̃

acts via χ. Let Rχ(P̃ ) (resp. Rχ(G̃)) be the associated Grothendieck group. The
product on R(P̃ ) respects characters, that is

Rχ(P̃ )⊗Z Rχ′(P̃ ) .−→ Rχχ′(P̃ )

Furthermore, the characters induce the decompositions (see [17, Lemma 2.8])⊕
χ

Rχ(P̃ ) ' R(P̃ )
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and ⊕
χ

Rχ(G̃) ' R(G̃).

An element in R(P̃ ) is said to be Ch-homogeneous if it lies in Rχ(P̃ ) for a certain
χ. Let W denote the Weyl group of G̃, and WP the subgroup of W whose elements
w verify wP̃w−1 = P̃ . Let X̃ = Hom(T̃ ,Gm) and X̃χ the subset of X̃ of those
elements who induce the character χ on Z̃. Then

R(T̃ ) ' Z[X̃]
R(P̃ ) ' Z[X̃]WP

R(G̃) ' Z[X̃]W

and
Rχ(T̃ ) ' Z[X̃χ]
Rχ(P̃ ) ' Z[X̃χ]WP

Rχ(G̃) ' Z[X̃χ]W .

Moreover, R(G̃) is a polynomial ring - in the classes of fundamental representations
- and R(P̃ ) is a free R(G̃) module (see [17, Theorem 2.10]).

Let V ectG̃(F) denote the category of vector G̃ equivariant vector bundles over
F . There are well known functors (see [17, §1])

Ind : RepF (P̃ )−→V ectG̃(F)

and
Res : V ectG̃(F)−→RepF (P̃ )

which are equivalences of categories and induce in K-theory isomorphisms inverse
to each other

Ind : R(P̃ )−→KG̃
0 (G̃/P̃ )

and
Res : KG̃

0 (G̃/P̃ )−→R(P̃ ).
Central simple algebras can be associated to every character χ and cocycle γ.

These algebras are called Tits algebras and were first introduced by Tits (see [29]).
Take Vχ in Repχ

F (G̃) and let Aχ = EndF (Vχ), then twist Aχ in Aχ,γ by the cocycle
obtained by pushing γ to PGL(Fsep) = AutFsep(Aχ ⊗F Fsep) using Vχ.

Lemma 2.1. (see [17, §3 and Lemma 3.4])
(1) The class of Aχ,γ in the Brauer group of F is independent of the represen-

tation chosen in Repχ
F (G̃).

(2) If we choose Vχχ′ = Vχ ⊗F Vχ′ , then Aχ,γ ⊗Aχ′,γ ' Aχχ′,γ . In the general
case, we only have Aχ,γ ⊗Aχ′,γ ∼ Aχχ′,γ .

(3) Aχ−1,γ ∼ Aop
χ,γ

(4) If a ∈ Rχ(G̃), then ind(Aχ,γ) divides dim(a).

Proof: 1, 2 and 3 are proved in [17]. To prove 4, we just need to show that
for every representation V ′

χ ∈ Repχ
F (G̃), ind(Aχ,γ) divides dim V ′

χ. But since the
degree of A′

χ,γ =γ End(V ′
χ) is dim V ′

χ, it is divisible by ind(A′
χ,γ) = ind(Aχ,γ) (by

1). 2

Let U ′ ∈ V ectG(F) be a vector bundle on which Aχ acts on the right. The
twisted form γU ′ of U ′ is naturally equipped with a right action of Aχ,γ . The
biexact functor

Repχ
F (P̃ )× (Aχ,γ −mod) −→ V ect(γF)

(U,M) 7−→ γ(Ind(U)⊗F V ∗
χ )⊗Aχ,γ M
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induces a pairing
µχ,γ : Rχ(P̃ )⊗Z K∗(Aχ,γ)−→K∗(γF).

For a Ch-homogeneous element a ∈ R(P̃ ), define ϕa,γ as

ϕa,γ : K∗(Aχa) −→ K∗(γF)
x 7−→ µχa,γ(a⊗ x).

The main theorem in [17] is the following.

Theorem 2.2. (see [17, Theorem 4.2]) For any Ch-homogeneous basis {ai|i =
1 . . . n} ∈ R(P̃ ) of the free R(G̃)-module R(P̃ ), the morphism

n∑
i=1

ϕai,γ :
n⊕

i=1

K∗(Aχai
,γ)−→K∗(γF)

is an isomorphism.

Remark 2.3. It is clear on this decomposition that K0(γF) is torsion free, hence
injects in K0(γFE) for any field extension E of F .

Let us now show a few properties of this decomposition.

Lemma 2.4. For a and b two Ch-homogeneous elements, x ∈ K∗(Aχa) and y ∈
K∗(Aχb

),
ϕab,γ(xy) = ϕa,γ(x).ϕb,γ(y).

Proof: This follows from the commutativity of the diagram

Rχ(P̃ )⊗ Rχ′ (P̃ )⊗Ki(Aχ,γ)⊗Kj(Aχ′,γ)

.⊗.

��

∼ // Rχ(P̃ )⊗Ki(Aχ,γ)⊗ Rχ′ (P̃ )⊗Kj(Aχ′,γ)

µχ,γ⊗µ
χ′,γ

��
Rχχ′ (P̃ )⊗Ki+j(Aχχ′,γ)

µ
χχ′,γ

��

Ki(γF)⊗Kj(γF)

.

��
Ki+j(γF)

∼ // Ki+j(γF)

which amounts to the identification of tensor products in the underlying categories
2

Lemma 2.5. The morphism ϕa,γ commutes with extension of scalars and with the
norm for a finite extension of the base field.

Proof: In the definition of µχ,γ , all the terms commute with the extension of
scalars and the norm (which is just a restriction).
2

As mentioned above (Lemma 2.1), Aχχ′,γ ' Aχ,γ ⊗ Aχ′,γ . Let Bχ′,γ be the
division algebra Brauer-equivalent to Aχ′,γ . Define Res : K∗(Aχχ′,γ) → K∗(Aχ,γ)
as the composite of the Morita invariance morphism from K∗(Aχχ′,γ) to K∗(Aχ,γ⊗
Bχ′,γ) with the restriction of the latter to K∗(Aχ,γ).

Lemma 2.6. The following diagram is commutative.

Rχ(G̃)⊗Rχ′(P̃ )⊗K∗(Aχχ′,γ)
(Id.Id)⊗Id //

( dim
ind(Aχ,γ ) .Id)⊗Res

��

Rχχ′(P̃ )⊗K∗(Aχχ′,γ)

µχχ′,γ

��
Rχ′(P̃ )⊗K∗(Aχ,γ)

µχ′,γ // K∗(γF)
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Proof: This amounts again to identifying tensor products in the underlying
categories. 2

Lemma 2.7. Let a be a Ch-homogeneous element of R(P̃ ) such that a =
∑

k λkbk

where the bk are also Ch-homogeneous and free (as a subset of the R(G̃)-module
R(P̃ )) and λk ∈ R(G̃) for all k, then

ϕa,γ =
∑

k

dim(λk)
ind(Aχλk

,γ)
ϕbk,γ ◦ ResAχa ,Aχbk

Proof: Let us first prove that the λk are Ch-homogeneous. Let λk =
∑

l εl,k

where the εl,k ∈ R(G̃) are Ch-homogeneous of character χl,k (χl,k 6= χl′,k when
l 6= l′). For every k, the product εl,kbk is Ch-homogeneous.

a =
∑

k

∑
l εk,lbk

=
∑

χl,kχbk
=χa

εk,lbk +
∑

χ′ 6=χa

∑
χl,kχbk

=χ′ εk,lbk

Since a is homogeneous of character χa, each
∑

χl,kχbk
=χ′ εk,lbk from the second

sum is zero. Since the bk are free, all the εk,l in this sum are zero.

a =
∑

χl,kχbk
=χa

εk,lbk

This implies that χl,k = χaχ−1
bk

(independant of l). Thus, for each k, there is only
one l such that εk,l 6= 0 and λk is therefore Ch-homogeneous of character χaχ−1

bk
.

This fact, as well as Lemma 2.6 proves the following equalities.

ϕa,γ(x) = µχa,γ((
∑

k λkbk)⊗ x)
=

∑
k µχa,γ(λkbk ⊗ x)

=
∑

k µχλkbk
,γ(λkbk ⊗ x)

=
∑

k
dim(λk)

ind(Aχλk
,γ)µχbk

,γ(bk ⊗ Resk(x))

=
∑

k
dim(λk)

ind(Aχλk
,γ)ϕbk,γ ◦ Resk(x)

where Resk = ResAχa ,Aχbk
. 2

Lemmas 2.4 and 2.7 enable us to compute cup-products. We shall now take care
of the functoriality of the decomposition. For a detailed account of twisted forms,
we refer the reader to [22, §5] and [21, §2].

We shall just need to investigate the simplest case of functorial behaviour, that
is when all the particular subgroups used in the construction are preserved by a
morphism between algebraic groups, as well as the cocycle used for twisting. A
more general case would be for example when the center is not preserved, but we
shall not need this. Let G̃ and G̃′ (resp. P̃ and P̃ ′, resp. Ỹ and Ỹ ′) two algebraic
groups as above (resp. two parabolic subgroups, resp. two subgroups of the centers
of G̃ and G̃′). Let f : G̃′ → G̃ be a morphism such that P̃ ′ (resp. Ỹ ′, Z̃ ′) is
mapped to P̃ (resp. Ỹ , Z̃). In such a case, a element γ′ of H1(Gal(Fsep/F ), G′)
can be pushed to an element γ of H1(Gal(Fsep/F ), G) and we get a morphism
γ′f :γ′ F →γ F .

We must now explain how the algebras Aχ behave under this functoriality. Let
γ′ : Gal(Fsep/F ) → G′ be a cocycle. Let Vχ be a Ch-homogeneous representation
of G̃ and Aχ = EndF (Vχ). Since Y ′ is mapped to Y by f , Vχ is pulled-backed to
a Ch-homogeneous representation Vχ′ of G̃′. Let Aχ′ = EndF (Vχ′). Evidently, we
have Aχ′ ' Aχ. Using Vχ′ , we can push γ′ to γ′ : Gal(Fsep) → Aut(Aχ′ ⊗F Fsep)
by the composition

Gal(Fsep)
γ−→ G′(Fsep)−→PGLFsep

(Vχ′ ⊗F Fsep) ' Aut(Aχ′ ⊗F Fsep)
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in which the morphism from G′(Fsep) to PGLFsep
(Vχ′ ⊗F Fsep) is induced by the

obvious one from G̃′ to PGLFsep(Vχ′ ⊗F Fsep). It is well defined since Ỹ ′ is central
in G̃′ and the representation is Ch-homogeneous. This defines a map from the
characters to Br(F ) called Tit’s map. From the following diagram, it is clear that
Aχ′,γ′ ' Aχ,γ .

Gal(Fsep)
γ′ //

γ
&&LLLLLLLLLL

G′(Fsep) //

f

��

PGLFsep
(Vχ′ ⊗F Fsep)

∼ //

o
��

Aut(Aχ′ ⊗F Fsep)

o
��

G(Fsep) // PGLFsep
(Vχ ⊗F Fsep)

∼ // Aut(Aχ ⊗F Fsep)

Let idχ,χ′ : K∗(Aχ′,γ′) → K∗(Aχ,γ) denote the isomorphism induced in K-theory.
It is now easy to deduce the following lemma and proposition.

Lemma 2.8. The following diagram is commutative.

Rχ(P̃ )⊗Z K∗(Aχ,γ)
µχ,γ //

f∗⊗idχ,χ′

��

K∗(γF)

f∗
γ′

��
Rχ′(P̃ ′)⊗Z K∗(Aχ′,γ′)

µχ′,γ′ // K∗(γ′F)

Proposition 2.9. Let G̃, G̃′, P̃ , P̃ ′, Ỹ , Ỹ ′, f , γ′ and γ be as above, let a be a
Ch-homogeneous element of R(P̃ ), then f∗(a) ∈ R(P̃ ′) is Ch-homogeneous and we
have the equality γ′f

∗ ◦ ϕa,γ = ϕf∗(a),γ′ ◦ idχ,χ′ .

Proof: This follows from Lemma 2.8 and the definition of ϕa,γ . 2

In the following, we shall omit the morphism idχ,χ′ .

Lemma 2.10. Let G̃1 and G̃2 be algebraic groups equipped with subgroups as above.
Let P̃1 × P̃2 be equipped with the product subgroups. Let i1 (resp. p1) be the
inclusion G̃1 → G̃1 × G̃2 (resp. the projection G̃1 × G̃2 → G̃1). Let γ be a cocycle
on G1 ×G2. Then

p1(γ)i
∗
1 ◦ ϕp∗1(a),γ = ϕa,p1(γ).

Proof: From Lemma 2.9 applied to p1 and γ, we deduce γp∗1◦ϕa,p1(γ) = ϕp∗1(a),γ .
The twisting respects the products, so that γp1 ◦p1(γ) i1 = id (see [22, Chapter 1,
§5.3]). Applying p1(γ)i

∗
1 on the left-hand side proves the lemma. 2

2.2. Quadrics. We now explain what this construction yields in the case of a
quadric. This is done in [17] and is just repeated here for the sake of complete-
ness and because we shall slightly modify the notation used in [17] to be coherent
with the rest of our text. We only use the cases of a quadratic form of dimension
n = 4m + 2 or n′ = 2m′ + 1.

Let H denote the hyperbolic form xy. Let G̃ = Spin(h), where h is the hyperbolic
form [n/2]H, and G̃′ = Spin(h′), where h′ is the hyperbolic form [n/2]H ⊥< 1 >.
The centers Z̃ and Z̃ ′ are µ4 and µ2. We shall take Ỹ and Ỹ ′ equal to µ2. This
yields G = SO(h) and G′ = SO(h′). The tori T and T ′ are diagonal, and T̃ and
T̃ ′ are their preimages in G̃ and G̃′. The group G (resp. G′) acts on the projective
space Pn−1 (resp. Pn′−1). Let P (resp. P ′) be the stabilizer of the projective point
(1 : 0 : . . . : 0) and P̃ (resp. P̃ ′) the preimage of P (resp. P ′) in G̃ (resp. G̃′). The
variety F = G/P (resp. F ′ = G′/P ′) is then the projective quadric defined by the
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equation h = 0 (resp. h′ = 0).

Let ri (resp. r′i) be the character of T̃ (resp. T̃ ′) induced by the character of
T (resp. T ′) such that ri(a) = a2i−1,2i−1. Let δ′ be the character of the spin
representation of G′ and δ+ and δ− the characters of the two spin representations
of G. We have

(δ′)2 = r′1 . . . r′[n′/2]

δ2
+ = r1 . . . r[n/2]−1r

−1
[n/2]

δ2
− = r1 . . . r[n/2]−1r[n/2]

The character group of h′ is

X̃ ′ = Z.r′1 ⊕ · · · ⊕ Z.r′[n′/2]−1 ⊕ Zδ′

and the character group of h is

X̃ = Z.r1 ⊕ · · · ⊕ Z.r[n/2]−1 ⊕ Zδ+

The Weyl group W ′ of G̃′ is S[n/2]nSign′[n/2] where Sign′[n/2] is the group Z/2[n/2],
and the Weyl group W of G̃ is S[n/2] n Sign[n/2], where Sign[n/2] is the group
ker(Z/2[n/2]−→Z/2) (the morphism is the sum). The Weyl group acts by permuting
the ri (resp. r′i) for the factor S[n/2] and changing ri in r−1

i (resp. r′i in (r′i)
−1)

for the factor Sign[n/2] (resp. Sign′[n/2]). The group WP (resp. W ′
P ) (see the

beginning of section 2.1) is the stabilizer of r1 (resp. r′1). We get

R(T̃ ′) = Z[X̃ ′] = Z[(r′1)
±1, . . . , (r′[n/2]−1)

±1, δ′]

and
R(T̃ ) = Z[X̃] = Z[r±1

1 , . . . , r±1
[n/2]−1, δ+, δ−].

We define

η′ =
∑

w∈Sign[n/2]∩WP

(δ′)w, η+ =
∑

w∈Sign[n/2]∩WP

δw
+, η− =

∑
w∈Sign[n/2]∩WP

δw
−.

They are fixed by WP . We also define

β′ =
∑

w∈Sign[n/2]

(δ′)w, β+ =
∑

w∈Sign[n/2]

δw
+, β− =

∑
w∈Sign[n/2]

δw
−.

They are fixed by W . We denote θi (resp. θ1
i ) the i-th elementary symmetric

polynomial in y1, . . . , y[n/2] (resp. y2, . . . , y[n/2]) where yi = ri +r−1
i . We define the

same polynomials with the r′i. We get

R(P̃ ′) = Z[X̃ ′]W
′
P = Z[(r′1)

±1, (θ′)11, . . . , (θ
′)1[n/2]−1, η

′]
R(G̃′) = Z[X̃ ′]W

′
= Z[θ′1, . . . , θ

′
[n/2]−1, β

′]

and
R(P̃ ) = Z[X̃]WP = Z[r±1

1 , θ1
1, . . . , θ

1
[n/2]−1, η−, η+]

R(G̃) = Z[X̃]W = Z[θ1, . . . , θ[n/2]−1, β−, β+]

The dimension of an element of R(G̃), R(P̃ ), or R(G̃) can be obtained by replacing
the ri, δ, δ+ and δ− by 1.

We get the decompositions

R(P̃ ) = R(G̃).1⊕R(G̃).r1 ⊕ . . .⊕R(G̃).rn−3
1 ⊕R(G̃).η− ⊕R(G̃).η+

and
R(P̃ ′) = R(G̃′).1⊕R(G̃′).r′1 ⊕ . . .⊕R(G̃′).(r′1)

n−3 ⊕R(G̃′).η′

The algebras Aχ,γ are all F for the powers of r1 (or r′1) and Aχη′ ,γ = C0(γh′).
We have C0(γh) = C+

0 (γh) ⊕ C−
0 (γh) which yields Aχη+ ,γ = C+

0 (γh) et Aχη− ,γ =
C−

0 (γh) (see [17, §5.1]). Any quadratic form with trivial discriminant and with the
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same dimension as h can be obtained as a twisted form of h. Any quadratic form
with the same dimension as h′ can be obtained as a twisted form of h′. The variety
γF (resp. γF ′ is then the projective quadric Xγh (resp. Xγh′).

We then get the decompositions

n∑
i=1

ϕi
γ : K∗(F )⊕ . . .⊕K∗(F )⊕K∗(C−

0 (γh))⊕K∗(C+
0 (γh)) ∼−→ K∗(Xγh)

and
n′∑

i=1

ϕi
γ : K∗(F )⊕ . . .⊕K∗(F )⊕K∗(C0(γh′)) ∼−→ K∗(Xγh′)

2.3. Generalized Severi-Brauer varieties. In this section, we shall do the same
thing as in the preceeding one, but for generalized Severi-Brauer varieties.

Let G̃ = SLn. Its center Z̃ is µn. We take Ỹ = Z̃. We then get G = PGLn.
The torus T is the image in PGLn of the diagonal subgroup of GLn and T̃ is the
diagonal subgroup in SLn. We then take

P̃ = {
(

a b
0 c

)
avec det(a) det(b) = 1} ⊂ SLn

in which a (resp. b) is a square matrix with k (resp. n − k) rows. Let ti be the
character of T̃ induced by the character ti(a) = ai,i on T . The Weyl group W is
Sn, and WP is the subgroup Sk ×Sn−k. We get

X̃ = (Z.t1 ⊕ · · · ⊕ Z.tn)/Z(t1 + · · ·+ tn)

and, if we denote σi (resp. σ′i, resp. σ′′i ) the i-th elementary symmetric polynomial
in the variables t1 . . . tn (resp. t1 . . . tk, resp. tk+1 . . . tn),

R(T̃ ) = Z[X̃] = Z[t±1
1 , . . . , t±1

n ]/(t1 . . . tn − 1)
R(P̃ ) = Z[X̃]WP = Z[σ′1, . . . , σ

′
k, σ′′1 , . . . , σ′′n−k]/(σ′kσ′′n−k − 1)

R(G̃) = Z[X̃]W = Z[σ1, . . . , σn]/(σn − 1)

The dimension of an element of R(T̃ ), R(G̃) or R(G̃) can be obtained by replacing
ti by 1.

We get the decomposition

R(P̃ ) =
⊕

α

R(G̃).σα

where σα is the Schur polynomial (see for example [4, p. 49]) whose multi-index
α spans the sequences α1, . . . , αk such that n− k ≥ α1 ≥ . . . ≥ αk ≥ 0.

The algebra Aχα,γ is A
⊗d(α)
γ where d(α) = α1 + · · · + αk and Aγ ' γEnd(V ).

The vector space V is the n dimensional one whose subspaces are the points of the
Grassmann variety. We get the following isomorphism.∑

α

ϕα
γ :

⊕
α

K∗(A⊗d(α)
γ ) ∼−→ K∗(γGr(k, n))

Generalized Severi-Brauer varieties SB(k, A) (see [1]) are twisted Grassmann vari-
eties and therefore part of this framework.
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2.4. The special case of SL4 and Spin6. Recall that q denotes an Albert qua-
dratic form and D a biquaternion algebra (related by the fact that the class of D
in the Brauer group of F is the clifford invariant of q). In this section, we shall
explain how the classical isomorphism between SL4 and Spin6 induces an isomor-
phism between the quadric Xq and the generalized Severi-Brauer variety SB(2, D).
In the split case, q is isomorphic to three times the hyperbolic form H =< 1,−1 >,
D is a matrix algebra and SB(2, D) is the grassmannian variety Gr(2, 4). It is well
known that the quadric X3H and Gr(2, 4) are isomorphic. We shall see that such
an isomorphism can be obtained from an isomorphism between SL4 and Spin(3H)
of which we shall give an explicit construction. This will permit us to relate their
representation rings and compute the induced morphisms on Panin’s decomposition
of the K-theory.

Let us now briefly recall the classical isomorphism between SL4 and Spin(3H).
Let V be an F -vector space of dimension 4 with a basis v1, . . . , v4. Let W = Λ2V .
It is naturally equipped with a symmetric bilinear form

Λ2V × Λ2V −→ Λ4V ' F
(u1 ∧ u2, u3 ∧ u4) 7−→ u1 ∧ u2 ∧ u3 ∧ u4.

The quadratic form associated to this bilinear form is hyperbolic; it is given by the
formula x1y1 + x2y2 + x3y3 on the basis w1 = v1 ∧ v2, w2 = v3 ∧ v4, w3 = v2 ∧ v3,
w4 = v1 ∧ v4, w5 = v1 ∧ v3 and w6 = v4 ∧ v2. Let us denote this form h.
An element g of SL(V ) acts on W by u1 ∧ u2 7−→ g(u1) ∧ g(u2). This de-
fines a morphism g1 from SL(V ) to GL(W ). By definition of the determinant,
g(u1) ∧ g(u2) ∧ g(u3) ∧ g(u4) = det(g)u1 ∧ u2 ∧ u3 ∧ u4, therefore h is conserved
by the action of SL(V ) and g1 actually maps to SO(h). Since Spin(h) and SO(h)
are both simple and simply connected groups, g1 lifts to a unique morphism g from
SL(V ) to Spin(h). In fact, g is an isomorphism for SL(V ) and Spin(h) have the
same dimension.

Let f : Spin(h) → SL(V ) be the inverse of g.

Lemma 2.11. The following diagram has exact rows - as complexes of algebraic
groups - and is commutative.

1 // µ2 // Spin(h) // SO(h) // 1

1 // µ2 // SL(V )

g

OO

g1 // SO(h) // 1

Proof: The right square is commutative by definition of g and the left square
has to be commutative, otherwise g would not be an isomorphism. 2

From now on, let us set G̃1 = SL(V ) and G̃2 = Spin(h). As in sections 2.2 and
2.3, we will denote T̃1 and T̃2 the two maximal tori and P̃1 and P̃2 the two parabolic
subgroups. Let us recall that T̃2 is the preimage in Spin(h) of the diagonal torus
T2 of SO(h). The morphism g1 maps a matrix of T̃2 as


t1 (0)

t2
t3

(0) t4

 7−→


t1t2

t3t4 (0)
t2t3

t1t4
(0) t1t3

t4t2


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where t1t2t3t4 = 1. Thus, g induces an isomorphism between T̃1 and T̃2. The par-
abolic subgroup P̃1 is the subgroup of SL(V ) which stabilises the plane < v1, v2 >,
whereas P̃2 is the preimage in Spin(h) of the subgroup in SO(h) which fixes the pro-
jective point (1 : 0 . . . : 0). An element s in SL(V ) verifies s(v1∧v2) = λv1∧v2 if and
only if s stabilises the plane < v1, v2 >, so P̃1 and P̃2 are also isomorphic through
g. This gives the classical isomorphism f from Xh = G̃2/P̃2 to Gr(2, V ) = G̃1/P̃1.

Lemma 2.12. Let Plh denote the natural embedding of Xh in P5 and Plk the
Plücker embedding of Gr(2, V ) in P5. The diagram

Xh

f

��

Plh // P5

Gr(2, V )
Plk

::vvvvvvvvv

is commutative.

Proof: The projective space P5 is the quotient G̃3/P̃3 where G̃3 = SL(W )
and P̃3 is the subgroup of SL(W ) that fixes the projective point (1 : 0 . . . : 0).
By definition, the Plücker embedding is induced by the morphims g1 (as described
above). The embedding of Xh in P5 is induced by the natural embedding of SO(h)
in SL(W ). Since P̃3 is the preimage of P2 by definition, we are done. 2

It is completely straightforward to check that the natural inclusion SO(h′) →
SO(h) maps the parabolic P̃ ′

2 to P̃2 (not surjectively) and induces the inclusion
Xh′ → Xh.

Let us now see how the representation rings R(P̃1), R(P̃2) and R(P̃ ′
2) map to

each other. From the mapping from T̃1 to T̃2 described above, we get

g∗(r1) = t1t2
g∗(r2) = t2t3
g∗(r3) = t1t3

To find the image of δ+, we can use the fact that the spinorial representation whose
highest weight is δ+ is precisely the standard representation of SL(V ), t1 + t2 + t3,
so δ+ maps to t1, t2 or t3, according to the choice of the basis. In our case,
δ2
+ = r1r2r

−1
3 , g∗(δ2

+) = g∗(r1).g∗(r2).g∗(r−1
3 ) = t22, so g∗(δ+) = t2 and g∗(δ−) =

g∗(δ+).g∗(r3) = t1t2t3. Hence,

(11)
g∗(1) = 1, g∗(r1) = t1t2, g

∗(r2) = t2t3, g
∗(r3) = t1t3,

g∗(δ+) = t2, g
∗(δ−) = t1t2t3

and

(12) f∗(1) = 1, f∗(t1) = δ−r−1
2 , f∗(t2) = δ+, f∗(t3) = δ−r−1

1 , f∗(t4) = δ+r−1
1 r−1

2 .

Let i denote the inclusion SO(h′) → SO(h). Clearly, i∗(r1) = r′1, i∗(r2) = r′2 and
i∗(r3) = 1 since i maps T̃ ′2 to T̃2 as

r1

r−1
1 (0)

r2

(0) r−1
2

1

 7−→


r1

r−1
1 (0)

r2

r−1
2

(0) 1
1


From this, we can deduce that i∗(δ2

+) = i∗(δ2
−) = (δ′)2, and since the caracter

group is a free Z-module, we must have i∗(δ+) = i∗(δ−) = δ′.
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We must now explain what happens in the non-split case, that is when we twist
these varieties and morphisms by cocycles. It will turn out that the isomorphism
f : Gr(2, V ) → Xh will be twisted in an isomorphism γf : SB(2, D) ' Xq, and the
morphism i : Xh′ → Xh will be twisted in a morphism γi : Xq′ → Xq.

Lemma 2.11 induces the commutative diagram with exact rows

1 // µ2 //� _

��

Spin(h)

f

��

// SO(h)

��

// 1

1 // µ4 // SL(V ) // PGL(V ) // 1

These short exact sequences induce the following exact sequences in cohomology,
since µ2, resp. µ4 is central in Spin(h), resp. SL(V ) (see [22, Chapter I, §5.7]).
The boundary morphisms between degree 1 and 2 terms induce the commutative
diagram

H1(F, SO(h)) //

��

H2(F, µ2)
∼ //

� _

��

2Br(F )� _

��
H1(F, PGL(V )) // H2(F, µ4)

∼ //
4Br(F )

Let γ be an element of H1(F, SO(h)) such that γh = q. Its image in 2Br(F )
is w2(q) − w2(h), where w2 is the Stiefel-Whitney invariant (see [22, chapter III,
§3.2, b]). It is given by the formula w2(q) =

∑
i<j(ai, aj), where the (ai) are the

coefficients of q on an orthogonal basis and (ai, aj) is the class of the quaternion

algebra
(

ai aj

F

)
in Br(F ). Using the relations

(a, b) = (b, a), (a2, b) = 0, (a, 1− a) = 0, (a,−a) = 0, (a, bc) = (a, b) + (a, c),

we get w2(q) − w2(h) = (a, b) + (c, d) = [D]. Now, the image of a cocycle γ ∈
H1(F, PGL(V )) = H1(F,Aut(End(V ))) in 4Br(F ) is the class of the twisted form
γEnd(V ) of the algebra End(V ) (see [21, Chapter X, §4 et §5]). Furthermore,
the twisting of Grassmann varieties is compatible with the twisting of algebras,
meaning that the twisted form γGr(k, V ), γ ∈ H1(F, PGL(V )) is the generalized
Severi-Brauer variety SB(k,γ End(V )) (see [1], after Theorem 1). We have therefore
proved the following result

Theorem 2.13. The isomorphism f from Spin(h) to SL(V ) induces an isomor-
phism from Xq to SB(2, D).

The commutative diagram

1 // µ2 //� _

��

Spin(h) //

��

SO(h)

xxrrrrrrrrrr
//

��

1

1 // µ6 // SL(W ) // PGL(W ) // 1

induces the following commutative diagram in cohomology.

H1(F,Spin(h)) //

��

H1(F, SO(h))

vvlllllllllllll
//

��

H2(F, µ2)
∼ //

� _

��

2Br(F )� _

��
H1(F, SL(W )) // H1(F, PGL(W )) // H2(F, µ6)

∼ //
6Br(F )

This shows that the cocycle used to twist Xh is sent by the morphism that induces
the inclusion of Xh in P5 to a cocycle whose image is trivial in Br(F ). The only
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forms of the projective space are the Severi-Brauer varieties, and a cocycle that
produces a non-split Severi-Brauer variety has a non-zero image in Br(F ) (since
the corresponding algebra cannot be split). So we have proved the following lemma

Lemma 2.14. The commutative diagram of Lemma 2.12 twists to a commutative
diagram

Xq

γf

��

γPlh // P5

SB(2, D)
γPlk

::vvvvvvvvv

Let us now handle the twisting of the morphism between Xh′ and Xh. We want
to understand how the decomposition h ' h′ ⊥< 1 > can be twisted in q ' q′ ⊥<
d±q′ > (since d±q = 1). The decomposition in the split case yields a morphism
O(h′) → SO(h). But since dim h′ is odd, we have O(h′) ' SO(h′) × µ2 (by M 7→
(det(M)M,det(M))). This induces a morphism SO(h′)×µ2 → SO(h), where −1 ∈
µ2 is sent to −Id ∈ SO(h). The element γ′′ ∈ H1(Gal(F(sep)/F ), O(h′)) twisting h′

in q′ will therefore yield by push-forward an element γ ∈ H1(Gal(Fsep/F ), SO(h))
twisting h ' h′ ⊥< 1 > in q ' q′ ⊥< d±q′ >. To explain what happens on Panin’s
decomposition, we shall use the groups and subgroups defined in table 1 below.

’ ” ”’

G̃2 Spin(h′) Spin(h′)× µ2 Spin(h)× µ2 Spin(h)

P̃2 Fix(1 : 0 : . . . : 0) Fix(1 : 0 : . . . : 0)× µ2 Fix(1 : 0 : . . . : 0)× µ2 Fix(1 : 0 : . . . : 0)

Z̃2 µ2 µ2 × µ2 µ4 × µ2 µ4

Ỹ2 µ2 µ2 × {1} µ4 µ2

G2 SO(h′) SO(h′)× µ2 SO(h) SO(h)
P2 Fix(1 : 0 : . . . : 0) Fix(1 : 0 : . . . : 0)× µ2 Fix(1 : 0 : . . . : 0) Fix(1 : 0 : . . . : 0)
Z2 {1} {1} × µ2 µ2 µ2

F = G/P X′
h X′

h Xh Xh

Table 1. Notation

Thus, G̃′′
2 = Spin(h′)×µ2 for example. Note that the inclusion ˜Y ′′′

2 = µ4 ↪→ µ4×
µ2 = Z̃ ′′′

2 is the identity onto µ4 and the quotient map onto µ2. We shall define ĩ1 :
G̃′

2−→G̃′′
2 as the natural inclusion, ĩ2 : G̃′′

2−→G̃′′′
2 as the identity on µ2 and the

inclusion Spin(h′) → Spin(h) on Spin(h′), ĩ3 : G̃2−→G̃′′′
2 as the natural inclusion

and ĩ : G̃′
2 → G̃2 as the inclusion Spin(h′) → Spin(h). All these morphisms respect

the subgroups mentioned in table 1, therefore they induce morphisms i1 : G′
2 → G′′

2 ,
i2 : G′′

2 → G′′′
2 , i3 : G2 → G′′′

2 and i : G′
2 → G2. Notice that ĩ3 ◦ ĩ = ĩ2 ◦ ĩ1, and

that i3 is the identity morphism of S0(h). The morphism i1 induces the identity
on Xh′ , i2 and i the inclusion Xh′ ↪→ Xh and i3 the identity on Xh. We shall
denote these induced morphisms by the same names. Now, let γ′′ and γ = i2(γ′′)
be as above, and let γ′ be the projection of γ′′ on H1(Gal(Fsep/F ), SO(h′)). The
twisted morphism γ′i1 : Xq′ → Xq′ is also the identity, γ′′i2 : Xq′ → Xq is the
inclusion induced by the decomposition q′ ⊥< d±q′ >' q and i3 : Xq → Xq is the
identity. The only reason why we introduce these new groups and morphisms is to
avoid explaining how to twist i to get the morphism Xq′ → Xq because it cannot be
obtained by the simple functorial behaviour explained above (clearly, i∗(γ′) 6= γ).
Instead, we shall consider (γi3)−1 ◦γ′′ i2 ◦γ′ i1, which we shall denote (improperly)
γi.
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Lemma 2.15. The commutative diagram

G′′
2 = SO(h′)× µ2

i //

��

SO(h) = G′′′
2

��
SL(W ′) // SL(W )

induces the - cartesian - commutative diagram

Xq′
γi //

γ′′Plh′=Plq′

��

Xq

γPlh=Plq

��
P4 // P5

Proof: We just have to prove that the cocycle γ′′ ∈ H1(Gal(Fsep/F ), SO(h′)×
µ2) (resp. γ ∈ H1(Gal(Fsep/F ), SO(h))) is pushed forward to the trivial cocycle
in H1(Gal(Fsep/F ), SL(W ′)) (resp. H1(Gal(Fsep/F ), SL(W ))). Actually, we have
already done so for γ in the proof of Lemma 2.14. If we decompose γ′′ as (γ′, e)
(coming from H1(Gal(Fsep/F ), SO(h′))⊕H1(Gal(Fsep/F ), µ2), the same proof ap-
plies for γ′ as for γ. For the cocycle e, we just have to notice that to find the twisted
form of the projective space that we might obtain, we have to push the cocycle to
H2(Gal(Fsep/F ), µ2) using the exact sequence

1 → µ6 → SL(W ) → PSL(W ) → 1

and since the map µ2 → SL(W ) factors through µ6, this push-forward has to be
zero. 2

2.5. K-theory and morphisms. We shall now use the results of section 2.1 to
follow the morphisms introduced in the last section on Panin’s decompositions of
the K-theory of quadrics and generalized Severi-Brauer varieties.

In section 2.3 and 2.2, we have seen that (1, r1, r
2
1, r

3
1, η−, η+) is a basis of the

R(G̃2)-module R(P̃2), (1, r′1, (r
′
1)

2, η′) is a basis of the R(G̃′
2)-module R(P̃ ′

2) and
(σ0,0, σ1,0, σ1,1, σ2,0, σ2,1, σ2,2) is a basis of the R(G̃1)-module R(P̃1). Let us recall
that σi,j is the Schur polynomial in t1 and t2, and σi (resp. σ′i, σ′′i ) is the elementary
symmetric polynomial of degree i in t1, . . . , t4 (resp. t1, t2, t3, t4). Furthermore,
t1t2t3t4 = σ′2σ

′′
2 = 1. From the set of equations (11), we get

g∗(r1) = t1t2 = σ′2 = σ1,1

g∗(r2
1) = (σ′2)

2 = σ2
1,1 = σ2,2

g∗(r3
1) = (σ′2)

3 = σ3
1,1 = σ4σ2,0 − σ3σ2,1 + σ2σ2,2

g∗(η+) = t2 + t1t2t3(t2t3)−1 = σ′1 = σ1,0

g∗(η−) = t1t2t3 + t2(t2t3)−1 = σ′2σ
′′
1 = σ1σ1,1 − σ2,1

Note that the last equalities on the right can easily be checked since they are defined
between polynomials. However, there is a way to find such equalities systematically
(see for example [3]). We now choose the cocycles as in section 2.4, and we do
not mention them anymore in the notation. The algebras corresponding to each
character are only defined up to their class in the Brauer group of F (see section
2.1, Lemma 2.1). According to sections 2.2 and 2.3, we can choose Aσα = D⊗|α|

for the P̃1 characters, Ari
1

= D⊗2i, Aη+ = D and Aη− = D⊗3 for the P̃2 characters
and A(r′1)

i = D⊗2i, Aη′ = D for the P̃ ′
2 characters. Using Proposition 2.9, we get

g∗ϕ1(x) = ϕσ0,0(x), g∗ϕr1(x) = ϕσ1,1(x), g∗ϕ(r1)2(x) = ϕσ2,2(x),

g∗ϕη+(x) = ϕσ1,0(x).
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On the other hand,

g∗ϕ(r1)3(x) = ϕσ4σ2,0−σ3σ2,1+σ2σ2,2(x)

and

g∗ϕη−(x) = ϕσ1σ1,1−σ2,1(x)

Let MA,A′ be the Morita morphism between the K-theory of two Brauer-equivalent
algebras A and A′. Let A and B be algebras with a non-zero morphism from A
to B. Denote ResB,A the restriction in K-theory and IA,B the morphism induced
by the functoriality of the K-theory of algebras. For central simple algebras, these
morphisms do not depend on the non-zero morphism. From Lemma 2.7, we deduce,
when D is a field (ind(D) = deg(D) = 4),

ϕσ4σ2,0−σ3σ2,1+σ2σ2,2(x)
= ϕσ2,0(ResD⊗6,D⊗2(x))− ϕσ2,1(ResD⊗6,D⊗3(x)) + 6ϕσ2,2(ResD⊗6,D⊗4(x))
= ϕσ2,0(MD⊗6,D⊗2(x))− ϕσ2,1(ResD⊗4,D⊗3 ◦MD⊗6,D⊗4(x))
+6ϕσ2,2(MD⊗6,D⊗4(x))

and

ϕσ1σ1,1−σ2,1(x)
= ϕσ1,1(ResD⊗3,D⊗2(x))− ϕσ2,1(x) = ϕσ1,1(ResD⊗3,D⊗2(x))− ϕσ2,1(x)

This sums up as

(13)

g∗ϕ1 = ϕσ0,0

g∗ϕr1 = ϕσ1,1

g∗ϕ(r1)2 = ϕσ2,2

g∗ϕ(r1)3 = ϕσ2,0 ◦MD⊗6,D⊗2

−ϕσ2,1 ◦ ResD⊗4,D⊗3 ◦MD⊗6,D⊗4

+6ϕσ2,2 ◦MD⊗6,D⊗4

g∗ϕη+ = ϕσ1,0

g∗ϕη− = ϕσ1,1 ◦ ResD⊗3,D⊗2 − ϕσ2,1

from which we can easily deduce the inverse morphisms

(14)

f∗ϕσ0,0 = ϕ1

f∗ϕσ1,0 = ϕη+

f∗ϕσ1,1 = ϕr1

f∗ϕσ2,0 = 16ϕr1 − 6ϕ(r1)2 ◦MD⊗2,D⊗4 + ϕ(r1)3 ◦MD⊗2,D⊗6

−ϕη− ◦ ID⊗2,D⊗3

f∗ϕσ2,1 = ϕr1 ◦ ResD⊗3,D⊗2 − ϕη−

f∗ϕσ2,2 = ϕ(r1)2

These equalities stay true when D is not a field (which wasn’t the case of the
formulas containing the Res morphisms).

Let us now compute the functoriality along γi : Xq′ → Xq. From the definition of
γi, we get γi∗ ◦ϕa,γ =γ′ i∗1 ◦γ′′ i

∗
2 ◦ (γi∗3)

−1 ◦ϕa,γ . Let p̃3 (resp. p̃1) be the projection
Spin(h) × µ2 → Spin(h) (resp. Spin(h′) × µ2 → Spin(h′)). Since p3 ◦ i3 = id, the
formula (γi∗3)

−1 ◦ϕĩ∗3(a),γ = ϕa,i3(γ) (Lemma 2.9) yields (γi∗3)
−1 ◦ϕa,γ = ϕp̃∗3(a),i3(γ).

The morphism i3 is in fact the identity of SO(h), so we have i3(γ) = γ. Thus,
γi∗ ◦ ϕa,γ =γ′ i∗1 ◦γ′′ i∗2 ◦ ϕp̃∗3(a),γ . From Lemma 2.9 and i2(γ′′) = γ, we have

γ′′i
∗
2 ◦ ϕp̃∗3(a),γ = ϕĩ∗2◦p̃∗3(a),γ′′ . Actually, p̃3 ◦ ĩ2 = ĩ ◦ p̃1, so we now juste have to

compute γ′i
∗
1 ◦ϕp̃∗1◦ĩ∗(a),γ′′ . Since γ′ = p1(γ), Lemma 2.10 yields γi∗ϕa,γ = ϕi∗(a),γ′ .
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Therefore, dropping the cocycles from the notation, we have

(15)

i∗ϕ1 = ϕ1

i∗ϕr1 = ϕr′1
i∗ϕ(r1)2(x) = ϕ(r′1)

2

i∗ϕ(r1)3(x) = ϕ(r′1)
3

= ϕ−1−((β′)2−θ′1−1)r′1+(θ′1+1)(r′1)
2+β′η′

= −ϕ1 − 11ϕr′1
+ 5ϕ(r′1)

2 + ϕη′ ◦ IF,D

i∗ϕη+ = ϕη′

i∗ϕη− = ϕη′

in which we have used Lemma 2.7 to compute ϕ(r′1)
3 .

2.6. Cup-products. We now give the results of some cup-products that we use in
the next section. These computations are straightforward applications of Lemmas
2.4 and 2.7. For the K-theory of SB(2, D), to use Lemma 2.7, we need to decompose
products of Schur polynomials as given in table 2. The computation of cup-products
on Xq can then be deduced from the ones on SB(2, D). Of course, they could also be
computed directly. To avoid lengthy formulas, these cup-products will be given in
tables. It should be understood that the intersection between a row and a column
gives the cup-product between the morphism at the top of the column and the
morphism at the beginning of the row. Moreover, the Morita morphisms MD⊗i,D⊗j

(resp. the restriction morphisms ResD⊗i,D⊗j will be abreviated as Mi,j (resp. Ri,j).
Thus, for example, in table 3, we can read

ϕσ1,0(x).ϕσ2,2(y) = ϕσ1,0 ◦MD⊗5,D(x.y)− ϕσ1,1 ◦ ResD⊗3,D⊗2 ◦MD⊗5,D⊗3(x.y)
+ϕσ2,2 ◦ ResD⊗5,D⊗4(x.y)

α 1, 0 1, 1 2, 0 2, 1 2, 2

1, 0 σ2,0 σ2,1 σ3σ0,0 − σ2σ1,0 σ4σ0,0 − σ2σ1,1 σ4σ1,0 − σ3σ1,1
+σ1,1 +σ1σ2,0 + σ2,1 +σ1σ2,1 + σ2,2 +σ1σ2,2

1, 1 σ2,2 σ4σ0,0 − σ2σ1,1 σ4σ1,0 − σ3σ1,1 σ4σ2,0 − σ3σ2,1
+σ1σ2,1 +σ1σ2,2 +σ2σ2,2

2, 0 σ1σ3σ0,0 σ1σ4σ0,0 + σ4σ1,0 σ1σ4σ1,0
+(σ3 − σ1σ2)σ1,0 −σ1σ2σ1,1 +(−σ1σ3 + σ4)σ1,1

−σ2σ1,1 +(σ2
1 − σ2)σ2,1 +(σ2

1 − σ2)σ2,2

+(σ2
1 − σ2)σ2,0 +σ1σ2,2

+σ1σ2,1 + σ2,2
2, 1 σ1σ4σ1,0 σ1σ4σ2,0

+(−σ1σ3 + σ4)σ1,1 +(−σ1σ3 + σ4)σ2,1
+σ4σ2,0 − σ3σ2,1 +(σ1σ2 − σ3)σ2,2

+σ2
1σ2,2

2, 2 σ2
4σ0,0 − σ3σ4σ1,0

+(−σ2σ4 + σ2
3)σ1,1

+σ2σ4σ2,0
+(−σ2σ3 + σ1σ4)σ2,1

+(σ2
2 − σ1σ3)σ2,2

Table 2. Decomposition of the products of Schur polynomials

3. Topological filtration

In this section, we shall compute part of the topological filtration of the quadric
Xq. For this task, Panin’s decomposition cannot be used directly, since it does
not respect the topological filtration. We shall therefore introduce new morphisms,
which map to the different levels of the filtration. The definition of those morphims
uses the reduced norm. Since it is only defined for K0, K1 and K2, those morphisms
will only be defined for those K-theory levels.

Let KiX
(j) be the group of level j in the topological filtration of KiX and let

KiX
(j/j+1) = KiX

(j)/KiX
(j+1).
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ϕ0,0 ϕ1,0 ϕ1,1 ϕ2,0 ϕ2,1 ϕ2,2

ϕ0,0 ϕ0,0 ϕ1,0 ϕ1,1 ϕ2,0 ϕ2,1 ϕ2,2
ϕ1,0 ϕ1,1 ϕ2,1 ϕ0,0R1,0M3,1 ϕ0,0M4,0 ϕ1,0M5,1

+ϕ2,0 −6ϕ1,0M3,1 −6ϕ1,1M4,2 −ϕ1,1R3,2M5,3
+ϕ2,0R3,2 +ϕ2,1R4,3 +ϕ2,2R5,4
+ϕ2,1 +ϕ2,2

ϕ1,1 ϕ2,2 ϕ0,0M4,0 ϕ1,0M5,1 ϕ2,0M6,2
−6ϕ1,1M4,2 −ϕ1,1R3,2M5,3 −ϕ2,1R4,3M6,4
+ϕ2,1R4,3 +ϕ2,2R5,4 +6ϕ2,2M6,4

ϕ2,0 16ϕ0,0M4,0 ϕ0,0R1,0M5,1 ϕ1,0R2,1M6,2
−5ϕ1,0R2,1M4,2 +ϕ1,0M5,1 −15ϕ1,1M6,2
−6ϕ1,1M4,2 −6ϕ1,1R3,2M5,3 +10ϕ2,2M6,4
+10ϕ2,0M4,2 +10ϕ2,1M5,3
+ϕ2,1R4,3 +ϕ2,2R5,4
+ϕ2,2

ϕ2,1 ϕ1,0R2,1M6,2 ϕ2,0R3,2M7,3
−15ϕ1,1M6,2 −15ϕ2,1M7,3
+ϕ2,0M6,2 +5ϕ2,2R5,4M7,5
−ϕ2,1R4,3M6,4
+16ϕ2,2M6,4

ϕ2,2 ϕ0,0M8,0
−ϕ1,0R2,1M8,2
+10ϕ1,1M8,2
+6ϕ2,0M8,2
−5ϕ2,1R4,3M8,4
+20ϕ2,2M8,4

Table 3. Cup-products for the K-theory of SB(2, D)

ϕ1 ϕr1 ϕ
r2
1

ϕ
r3
1

ϕη− ϕη+

ϕ1 ϕ1 ϕr1 ϕ
r2
1

ϕ
r3
1

ϕη− ϕη+

ϕr1 ϕ
r2
1

ϕ
r3
1

ϕ1M8,0 ϕr1R3,2M5,3 ϕr1R3,2

+26ϕr1M8,2 −ϕη+M5,1 −ϕη−
−16ϕ

r2
1
M8,4

+6ϕ
r3
1
M8,6

−ϕη−R4,3M8,4

−ϕη+R2,1M8,2

ϕ
r2
1

ϕ1M8,0 6ϕ1M10,0 −ϕr1R3,2M7,3 −ϕr1R3,2M5,3

+26ϕr1M8,2 +125ϕr1M10,2 +ϕ
r2
1
R5,4M7,5 +ϕ

r2
1
R5,4

−16ϕ
r2
1
M8,4 −70ϕ

r2
1
M10,4 +ϕη−M7,1 +ϕη+M5,1

+6ϕ
r3
1
M8,6 +20ϕ

r3
1
M10,6

−ϕη−R4,3M8,4 −5ϕη−R4,3M10,4

−ϕη+R2,1M8,2 −5ϕη+R2,1M10,2

ϕ
r3
1

20ϕ1M12,0 ϕr1R3,2M9,3 ϕr1R3,2M7,3

+366ϕr1M12,2 −ϕ
r2
1
R5,4M9,5 −ϕ

r2
1
R5,4M7,5

−195ϕ
r2
1
M12,4 +ϕ

r3
1
R7,6M9,7 +ϕ

r3
1
R7,6

+50ϕ
r3
1
M12,6 −ϕη+M9,3 −ϕη−M7,3

−15ϕη−R4,3M12,4

−15ϕη+R2,1M12,2

ϕη− 17ϕr1M6,2 −ϕ1M4,0

−6ϕ
r2
1
M6,4 +6ϕr1M4,2

+ϕ
r3
1

−ϕ
r2
1

−ϕη+R2,1M6,2

ϕη+ 17ϕr1
−6ϕ

r2
1
M2,4

+ϕ
r3
1
M6,2

−ϕη− I2,3

Table 4. Cup-products for the K-theory of Xq

3.1. Computation of KiX
(1)
q and KiX

(2)
q (i = 0, 1, 2).

Definition 3.1. For i = 0, 1 and 2, we shall define

Ψ0,Ψ1,Ψ2,Ψ3 : KiF−→KiXq

Ψ′
0,Ψ

′
1,Ψ

′
2 : KiF−→KiXq′
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by
Ψ0 = ϕ1

Ψ1 = ϕ1 − ϕr1 ◦MF,D⊗2

Ψ2 = ϕ1 − 2ϕr1 ◦MF,D⊗2 + ϕ(r1)2 ◦MF,D⊗4

Ψ3 = ϕ1 − 3ϕr1 ◦MF,D⊗2 + 3ϕ(r1)2 ◦MF,D⊗4 − ϕ(r1)3 ◦MF,D⊗6

Ψ′
0 = ϕ1′

Ψ′
1 = ϕ1′ − ϕr′1

◦MF,D⊗2

Ψ′
2 = ϕ1′ − 2ϕr′1

◦MF,D⊗2 + ϕ(r′1)
2 ◦MF,D⊗4

and
Ψ2′ ,Ψ2′′ ,Ψ3′ : KiD−→KiXq

Ψ′
2′ : KiD−→KiXq′

by

Ψ2′ = ϕ1 ◦Nrd + ϕr1 ◦MF,D⊗2 ◦Nrd− ϕη+

Ψ2′′ = ϕ1 ◦Nrd + ϕr1 ◦MF,D⊗2 ◦Nrd− ϕη− ◦MD,D⊗3

Ψ3′ = ϕ1 ◦Nrd + 4ϕr1 ◦MF,D⊗2 ◦Nrd− ϕ(r′1)
2 ◦MF,D⊗4 − ϕη+ − ϕη− ◦MD,D⊗3

Ψ′
2′ = ϕ1′ ◦Nrd + ϕr′1

◦MF,D⊗2 ◦Nrd− ϕη′

Remark 3.2. Note that Ψ3′ = Ψ2′ + Ψ2′′ −Ψ2 ◦Nrd.

These morphisms are related in the following way.

Lemma 3.3. Recall that i denotes the inclusion Xq′ ↪→ Xq. For j = 0, 1, 2 and 2′,
i∗Ψj = Ψ′

j . Moreover, i∗Ψ3 = −2Ψ′
2 + Ψ′

2′ ◦ IF,D and i∗Ψ3′ = 2Ψ′
2′ −Ψ′

2 ◦Nrd.

Proof: This follows from definition 3.1 and equalities (15). 2

Lemma 3.4. Let k, k′ ∈ KiF and d ∈ KiD.
For j = 0, 1, 2, 3, Ψ0(k).Ψj(k′) = Ψj(k.k′)
For j = 0, 1, 2, Ψ′

0(k).Ψ′
j(k

′) = Ψ′
j(k.k′)

Moreover, Ψ1(k).Ψ1(k′) = Ψ2(k.k′)
Ψ′

1(k).Ψ′
1(k

′) = Ψ′
2(k.k′)

Ψ1(k).Ψ2(k′) = Ψ3(k.k′)
Ψ1(k).Ψ2′(d) = Ψ1(k).Ψ2′′(d) = Ψ3′(k.d)

Proof: This follows from the definition of these morphisms and table 4. 2

Theorem 3.5. For i = 0, 1 and 2, the morphisms

Ψ0 ⊕Ψ1 ⊕Ψ2 ⊕Ψ3 ⊕Ψ2′ ⊕Ψ2′′ : KiF
⊕4 ⊕KiD

⊕2−→KiXq

Ψ0 ⊕Ψ1 ⊕Ψ2 ⊕Ψ3 ⊕Ψ2′ ⊕Ψ3′ : KiF
⊕4 ⊕KiD

⊕2−→KiXq

Ψ′
0 ⊕Ψ′

1 ⊕Ψ′
2 ⊕Ψ′

2′ : KiF
⊕3 ⊕KiD−→KiXq′

are isomorphisms.

Proof: The first morphism is the composition of the morphism

ϕ1 ⊕ ϕr1 ⊕ ϕr2
1
⊕ ϕr3

1
⊕ ϕη+ ⊕ ϕη− :

KiF ⊕KiD
⊗2 ⊕KiD

⊗4 ⊕KiD
⊗6 ⊕KiD

⊗1 ⊕KiD
⊗3−→KiXq

which is an isomorphism and the isomorphism

KiF
⊕4 ⊕KiD

⊕2−→KiF ⊕KiD
⊗2 ⊕KiD

⊗4 ⊕KiD
⊗6 ⊕KiD

⊗1 ⊕KiD
⊗3

given by the matrix
Id Id Id Id Nrd Nrd
0 −MF,D⊗2 −2MF,D⊗2 −3MF,D⊗2 MF,D⊗2 ◦Nrd MF,D⊗2 ◦Nrd
0 0 MF,D⊗4 3MF,D⊗4 0 0
0 0 0 −MF,D⊗6 0 0
0 0 0 0 −Id 0
0 0 0 0 0 −MD,D⊗3

 .
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α (0, 0) (1, 1) (2, 0) (2, 2) (1, 0) (2, 1)
|α| 0 2 2 4 1 3

SαJ 1 Λ2J S2J Λ2J ⊗ Λ2J J J ⊗ Λ2J
dim SαJ 1 1 3 1 2 2

Table 5.

This matrix is invertible because it is upper-triangular, with invertible morphisms
on the diagonal. The result for the second morphism is then a simple consequence
of Remark 3.2. For the last morphism, the same kind of proof as for the first one
applies. 2

Theorem 3.6. For i = 0, 1, 2 and for j = 0, 1, 2, 3, Ψj maps to KiX
(j)
q .

Before proving this theorem, we shall obtain a simple corollary.

Corollary 3.7. For i = 0, 1, 2 and for j = 0, 1, 2, Ψ′
j maps to KiX

(j)
q′ .

Proof: This is a consequence of Lemma 3.3, since i∗ preserves the topological
filtration. 2

Let us now prove Theorem 3.6. First of all, the theorem reduces to the fact that
Ψ1([F ]) lies in K0X

(1)
q ([F ] is the class in K0F of F itself). Indeed, the cup-product

by [F ] is the identity on KiF or KiD, thus the formulas of Lemma 3.4 imply the
other cases since cup-products respect the filtration. In order to prove that Ψ1([F ])
is in K0X

(1)
q , we shall make a few computations in the split case (Xq = Xh). We

make use of elements of K0Xh, whose codimensions are known. These elements
come from the embedding of Xh in P5, and they generate K0Xh (see [9, §3.2]).
Let Q be the class in K0Xh of a rationnal point, H the class of a hyperplane
section ((P4 ∩ Xh) ⊂ P5), D the class of a line ((P1 ∩ Xh) ⊂ P5). These classes
are independant of the choice of the embeddings of the projective spaces in P5.
Let P1 (resp. P2 be the class of the intersection of Xh and the projective plane
w2 = w4 = w6 = 0 (resp. w2 = w4 = w5 = 0) in the basis chosen in section 2.4.
These two classes are different in K0Xh. We will also denote by I the class of the
structural sheaf of Xh. By construction, the codimensions of I, H, P1, P2, D and
Q are respectively 0, 1, 2, 2, 3 and 4. To keep the notation simple, we will denote
identically the images of these elements in K0Gr(2, V ) by the isomorphism g∗. The
cup-products between these elements are given by the formulas (see [9])
(16)
H2 = P1 + P2 −D, H.P1 = H.P2 = D, P1

2 = P2
2 = Q, P1.P2 = 0, H.D = Q.

All the other ones are zero for codimension reasons. The subquadric Xh′ of equation
x′1y

′
1+x′2y

′
2+(z′)2 = 0 includes in the quadric Xh of equation x1y1+x2y2+x3y3 = 0

by x1 = x′1, y1 = y′1, x2 = x′2, y2 = y′2 and x3 = y3 = z′, so H′ = i∗H is the class
of Xh′ ∩P3, D′ = i∗P1 = i∗P2 is the class of Xh′ ∩P1, Q′ = i∗D is the class of a
rationnal point and i∗Q = 0. The non trivial cup-products between these elements
are

(17) (H′)2 = 2D′ −Q′, H′.D′ = Q′.
We also introduce elements of K0Gr(2, V ) which are classes of vector bundles. Let
J be the canonical bundle of Gr(2, V ) - the fiber above a point is the subspace of V
that this point represents. Let Sα be the Schur functor of multi-index α. We shall
use the vector bundles SαJ , where α = (0, 0), (1, 0), (1, 1), (2, 0), (2, 1) and (2, 2).
Table 5 shows their values in terms of symmetric and exterior powers of J . By
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definition, the morphism ϕσ0,0 (resp. ϕ1 = Ψ0, ϕ′1 = Ψ′
0) is equal to the pull-back

along the structural morphism of Gr(2, V ) (resp. Xh, Xh′). Of course, this is also
true in the non-split case. In the following, we will simply replace ϕσ0,0(k) (resp.
ϕ1(k), Ψ0(k), ϕ′1(k), Ψ′

0(k)) by k, to shorten the formulas.

Lemma 3.8. In the split case, ϕσα
◦ MF,D⊗|α|(k) = k.SαJ . In particular, ϕσα

◦
MF,D⊗|α|([F ]) = SαJ .

Proof: From the cup-products in table 3, we get ϕσα ◦MF,D⊗|α|(k) = k.ϕσα ◦
MF,D⊗|α|([F ]). The identification of ϕσα

(MF,D⊗|α|([F ])) and SαJ easily follows
from the definition of ϕσα

(see section 2.3). 2

The Plücker embedding Plk of Gr(2, V ) in P5 sends a subspace U of V to Λ2U
in Λ2V , so Plk∗(OP5(−1)) = Λ2J . Since Plk ◦ f = Plh (see Lemma 2.12), the
classical equality OP5(−1) = OP5 −H pulls back to K0Xh as

(18) Λ2J = I −H

Since H = I − OXh
(−1), it can also be defined in the non-split case by the same

formula. Its codimension is 1 - even in the non-split case - since it is in the kernel
of the rank application (on vector bundles). From the definition of Ψ1, Section 2.5
and Lemma 3.8, we get

Ψ1([F ]) = ϕ1([F ])− ϕr1([F ]) = f∗ϕσ0,0([F ])− f∗ϕσ1,1([F ]) = I − Λ2J = H.

The equality Ψ1([F ]) = H has to be true in the non-split case since the extension
of scalars is injective on K0 (see Remark 2.3), so we have proved Ψ1([F ]) ∈ K0X

(1)
q

and Theorem 3.6. We shall establish the following (which is a little more difficult):

Theorem 3.9. For i = 0, 1, 2 and for j = 2, 3, Ψj′ maps to KiX
(j)
q . Ψ2′′ maps to

KiX
(2)
q .

As for Theorem 3.6, we have a simple corollary.

Corollary 3.10. For i = 0, 1, 2, Ψ′
2′ maps to KiX

(2)
q′ .

Let us now prove Theorem 3.9. It reduces to the case of Ψ2′ since we have
Ψ1([F ]).Ψ2′(d) = Ψ3′(d) (see Lemma 3.4) and Ψ2′′(d) = Ψ3′(d) − Ψ2′(d) + Ψ2 ◦
Nrd(d) (see Remark 3.2).

By definition, the bundle J fits into an exact sequence

0−→J−→V ⊗OGr(2,V )−→J ′−→0

and the dual sequence is

0−→J ′∗−→V ⊗OGr(2,V )−→J ∗−→0.

Let φ be an element of V ∗ whose kernel is < v1, v2, v3 > (these are the elements of
the basis of V chosen at the beginning of section 2.4). Such an element gives rise
to a section s of J ∗ through the composition

OGr(2,V )
φ⊗−→ V ∗ ⊗OGr(2,V )−→J ∗

The zero locus of s is the set of points x such that

Jx−→V ⊗OGr(2,V ),x
φ.Id−→ OGr(2,V ),x

is zero, that is if Jx in V is included in kerφ. Through the Plücker embedding, this
condition becomes Λ2Jx ⊂ Λ2 ker φ. Since Λ2 ker φ =< v1∧v2, v1∧v2, v1∧v3 >=<
w1, w3, w5 >, we obtain the subvariety w2 = w4 = w6 = 0 whose class is P1 in
K0Gr(2, V ).
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The Koszul exact sequence (see [5, IV, §2]) for the bundle J (of rank 2) and the
section s is

0−→Λ2J−→J−→OGr(2,V )−→Os−→0

where Os is the structural sheaf of the zero locus of s. Thus J = S1,1J +I −P1 in
K0Gr(2, V ). The cup-products (16), the table 5 and the equality S1,1J + S2,0J =
(S1,0)2 give

S0,0J = I
S1,0J = 2I −H − P1

S1,1J = I −H
S2,0J = 3I − 3H− 3P1 + P2 +D +Q
S2,1J = 2I − 3H+ P2

S2,2J = (I −H)2 = I − 2H+ P1 + P2 −D
From (12), we get

ϕ(r1)i ◦MF,D⊗2i(k) = f∗(ϕ(σ1,1)i)(k)
= f∗(k).f∗((I −H)i)
= k.(I −H)i

ϕη+ ◦MF,D(k) = f∗(ϕσ1,0(k))
= f∗(k.(2I −H − P1))
= k.(2I −H − P1)

and

ϕη− ◦MF,D⊗3(k) = f∗(ϕσ1,1 ◦ ResD⊗3,D⊗2 ◦MF,D⊗3(k)− ϕσ2,1 ◦MF,D⊗3(k))
= f∗(ϕσ1,1 ◦ 4MF,D⊗2(k)− ϕσ2,1 ◦MF,D⊗3(k))
= f∗(k.4S1,1J − k.S2,1J )
= f∗(k.4(I −H)− k.(2I − 3H+ P2))
= k.(2I −H − P2)

Thus, in the split case,

(19)
Ψ0(k) = k.I, Ψ1(k) = k.H, Ψ2(k) = k.H2, Ψ3(k) = k.H3,

Ψ2′ ◦MF,D(k) = k.P1, Ψ2′′ ◦MF,D(k) = k.P2, Ψ3′(k) = k.D.

and applying i∗

(20) Ψ′
0(k) = k.I ′, Ψ′

1(k) = k.H′, Ψ′
2(k) = k.(H′)2, Ψ′

2′ ◦MF,D(k) = k.D′.

In particular, this proves that when Xh is split, Ψ2′ maps to K0X
(2)
q , so Theorem

3.9 is proved in this case. We shall now establish the result in the non-split case.
Let K be the function field of the Severi-Brauer variety of D. It has two important
properties. First, it splits D (and equivalently Xq), second, K2F injects in K2K (see
[26, §5]). Instead of K, we could use any other field that has these two properties.

Definition 3.11. For i = 0, 1, 2, using the Brown-Gersten-Quillen spectral se-
quence (see [19] or [23]), we define ξ0, ξ1, ξ′0 and ξ′1 as the compositions

ξ0 : KiF−→KiXq−→KiX
(0/1)
q ↪→ H0(Xq,Ki)

ξ′0 : KiF−→KiXq′−→KiX
(0/1)
q′ ↪→ H0(Xq′ ,Ki)

ξ1 : KiF
.H−→ KiX

(1)
q −→KiX

(1/2)
q ↪→ H1(Xq,Ki+1)

ξ′1 : KiF
.H′

−→ KiX
(1)
q′ −→KiX

(1/2)
q′ ↪→ H1(Xq′ ,Ki+1)

Proposition 3.12. The morphisms ξ0, ξ1, ξ′0 and ξ′1 are isomorphisms.
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Proof: We shall only handle the case of ξ0 and ξ1, since the same proof can be
applied to ξ′0 and ξ′1. In the split case, KiX

(j)
h is generated by the cup-products of

KiF with the elements of (I,H,P1,P2,D,Q) whose codimension is greater than j
(see [9, §3.2]). Thus

KiF−→KiXq−→KiX
(0/1)
q

and
KiF

.H−→ KiX
(1)
q −→KiX

(1/2)
q

are isomorphisms. Furthermore, in the split case, the B.G.Q. spectral sequence
degenerates, so the inclusions

KiX
(0/1)
q ↪→ H1(Xq,Ki)

and
KiX

(1/2)
q ↪→ H1(Xq,Ki+1)

are isomorphisms. Hence, ξ0 and ξ1 are isomorphisms.

In the non-split case, (see [7, §5.3, §5.4 and Corollary 8.6]), ξ0 et ξ1 are isomor-
phisms after localisation at 2. Their kernels and cokernels are therefore 2-torsion
free so by a transfer argument to a degree 4 extension that splits Xq, they are zero.
2

Corollary 3.13. For X = Xq and X = Xq′ , for i = 0, 1, 2 and for j = 0, 1 , the
morphism

KiX
(j/j+1) ↪→ H1(X,Ki+j)

is an isomorphism, as well as the composition

KiF
Ψj−→ KiX

(j)−→KiX
(j/j+1).

Corollary 3.14. For X = Xq and X = Xq′ , for i = 0, 1, 2 and for j = 0, 1,
KiX

(j/j+1) injects in Ki(X)(j/j+1)
K .

Since Ψ2′ maps to KiX
(2)
q in the split case, its image in KiX

(0/1)
q (and then

KiX
(1/2)
q ) has to be zero. This is also true in the non-split case by extension of

scalars to K and corollary 3.14. Thus Theorem 3.9 is proved.

Corollary 3.15. For i = 0, 1, 2,

(1) the morphism Ψ1 ⊕Ψ2 ⊕Ψ2′ ⊕Ψ3 ⊕Ψ3′ induces an isomorphism between
KiF ⊕KiF ⊕KiD ⊕KiF ⊕KiD and KiX

(1)
q ,

(2) the morphism Ψ2⊕Ψ2′ ⊕Ψ3⊕Ψ3′ induces an isomorphism between KiF ⊕
KiD ⊕KiF ⊕KiD and KiX

(2)
q ,

(3) the morphism Ψ′
1⊕Ψ′

2⊕Ψ′
2′ induces an isomorphism between KiF ⊕KiF ⊕

KiD and KiX
(1)
q′ ,

(4) the morphism Ψ′
2 ⊕ Ψ′

2′ induces an isomorphism between KiF ⊕KiD and
KiX

(2)
q′ .

(5) in the split case, Ψ3 ⊕ Ψ3′ induces an isomorphism between KiF ⊕ KiD

and KiX
(3)
q .

Proof: Points 1, 2, 3, 4 and 5 are true in the split case because of (19) and
points 1, 2, 3 and 4 directly follow in the general case from corollary 3.14 and the
fact that KiF injects in KiK. 2
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3.2. The group K1X
(4)
q . Let X be a smooth projective variety of dimension d

over F . We shall now use the norm map Ni
X : Hd(X,Ki+d)−→KiF . It commutes

with the extension of scalars for a field extension and with the norm for finite field
extensions.

Proposition 3.16. The morphism N has the following properties.
(1) Let π be the structural morphism of X and p : Hd(X,Kd+i) → KiX the

morphism given by the B.G.Q. spectral sequence, then Ni
X = π∗ ◦ p.

(2) Let φ be a quadratic form and L an extension of F such that Xφ has an
L-rationnal point, then the morphism

N1
Xφ

: Hd((Xφ)L,Kd+1)−→K1L

is an isomorphism.
(3) Let X(L) be the set of L-rationnal points of X. The morphism∑

N1
L/F :

⊕
X(L) 6=∅

Hd(XL,Kd+1)−→Hd(X,Kd+1)

is surjective.

Proof: 1. This is a consequence of the functoriality of the B.G.Q. spectral
sequence with respect to proper morphisms. 2. See [2, Example 2.3. 3]. This can
be seen easily on the Gersten complex. 2

Let SΓ(q) be the special Clifford group of q and Spin(q) the Spin group, kernel
of the spinor norm sn : SΓ(q)−→F ∗.

Theorem 3.17. (see [8, Proposition 4.2 and Corollary 4.3]) The following diagram
is commutative and has exact rows and columns.

1

��

1

��
1 // Spin(q)

��

// D∗ Nrd //

��

F ∗

1 // SΓ(q) //

sn

��

D∗ × F ∗ ω //

��

F ∗

F ∗ F ∗

��
1

where ω(d, f) = Nrd(d)/f2.

This diagram is functorial with respect to the extension of scalars, thus the
similar diagram of algebraic groups has the same properties.

In [2], Chernousov and Merkurjev define a morphism α : SΓ(φ)−→A0(Xφ,K1)
for any quadratic form φ over an infinite field F of characteristic not 2. In our
case, q is of dimension 6 so A0(Xq,K1) coincides with H4(Xq,K5). This morphism
commutes with the extension of scalars for any field extension and with the norm
for finite field extensions.

Proposition 3.18. ([2, Proposition 3.5]) The morphism α has the property that
N1

Xq
◦ α = sn.
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For an algebraic group G, let RG denote its subgroup of R-equivalence (see [2,
§1.1]).

Theorem 3.19. ([2, Proposition 3.5]) The morphism α induces isomorphisms (also
denoted by α)

SΓ(q)/RSpin(q) ' H4(Xq,K5)

and therefore
Spin(q)/RSpin(q) ' ker NXq

.

Theorem 3.20. (see [33] or [2, Theorem 6.1]) The subgroup of R-equivalence of
the group SL1(D) is RSL1(D) = [D∗, D∗].

The commutative diagram of Theorem 3.17 therefore induce an injective mor-
phism

β : SΓ(q)/RSpin(q)−→K1D ⊕K1F

such that p2 ◦ β = sn, where p2 : K1D ⊕ K1F → K1F is the projection on the
second factor.

Corollary 3.21. This gives rise to isomorphisms

ker(sn : SΓ(q)/RSpin(q)−→K1F ) ' SK1D

and
ker(N1

Xq
: H4(Xq,K5)−→K1F ) ' SK1D

Let us now use these tools to compute K1X
(4)
q .

Definition 3.22. For i = 0, 1, 2, we define the morphism

Θ : KiD ⊕KiF−→KiXq

by
Θ(d, f) = Ψ3′(d)−Ψ3(f)

Remark 3.23. The morphism Θ is injective.

Definition 3.24. For i = 0, 1, 2, let VKiD be the kernel of the morphism

KiD ⊕KiF −→ KiF
(d, f) 7−→ Nrd(d)− 2f.

Proposition 3.25. The diagram

SΓ(q)/RSpin(q)

α

��

β // K1D ⊕K1F

Θ

��
H4(Xq,K5) // // K1X

(4)
q

� � // K1X
(3)
q

is commutative.

Proof: Proposition 3.16, point 3. and isomorphism α : SΓ(q)/RSpin(q) →
H4(Xq,K5) - commuting with NL/F - prove that the morphism∑

NL/F :
⊕

Xq(L) 6=∅

SΓ(q)/RSpin(q)L−→SΓ(q)/RSpin(q)

is surjective. Since all the morphisms in the diagram commute with the norm, the
theorem can be proved in the case where the quadric is isotropic. We shall suppose
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so from now on. In the isotropic case, N1
Xq

: H4(Xq,K5)−→K1F is isomorphism.
The commutative diagram

H4(Xq,K5) // //

N1
Xq &&MMMMMMMMMMM K1X

(4)
q

π∗

��
K1F

therefore shows that π∗ induces an isomorphism between K1X
(4)
q and K1F . Its

inverse π−1
∗ is the morphism K1F

.Q−→ KXq (recall that Q is the class of a rationnal
point of Xq). In the diagram

SΓ(q)/RSpin(q)

α

��

β //

sn

''NNNNNNNNNNN
K1D ⊕K1F

p2

ttiiiiiiiiiiiiiiiiiiii

Θ

��

K1F

H4(Xq,K5)

N1
Xq

88ppppppppppp
// K1X

(4)
q

π∗

ddHHHHHHHHH
� � // K1X

(3)
q

all the triangles are commutative, but we still have to understand what happens
with the right quadrangle. The norms N1

Xq
, sn and the morphism π∗ restricted

to K1X
(4)
q are isomorphisms, so we have to show that π−1

∗ ◦ p2 ◦ β = Θ ◦ β. The
image of β in K1D ⊕ K1F is VK1D by definition of β and the morphism p2 re-
stricted to VK1D is an isomorphism. Let us compute its inverse ((p2)|VK1D)−1 :
K1F−→VK1D.

Lemma 3.26. When D is not a division algebra, the composition VK1D ↪→ K1D⊕
K1F

p2−→ K1F has a section s : K1F−→VK1D.

Proof: Since D - whose degree is 4 - is not a division algebra, it is similar to a
quaternion algebra Q. We define t = MQ,D ◦ IF,Q. Thus

NrdD ◦ t = NrdD ◦MQ,D ◦ IF,Q

= NrdQ ◦ IF,Q

= deg(Q)IdK1F

= 2IdK1F

The morphism s = (t, Id) : K1F−→K1D ⊕ K1F factors through VK1D and is
therefore the desired section. 2

This section has to be ((p2)|VK1D)−1 (since it is an isomorphism).

To check that π−1
∗ ◦ p2 ◦ β = Θ ◦ β, it is then sufficient to prove that π−1

∗ =
Θ ◦ ((p2)|VK1D)−1. We have the following equalities:

Θ ◦ ((p2)|VK1D)−1(k) = Ψ3′ ◦MQ,D ◦ IF,Q(k)−Ψ3(k)
= Ψ3′ ◦MQ,D ◦ IF,Q(k.[F ])−Ψ3(k.[F ])
= Ψ3′(k.MQ,D ◦ IF,Q([F ]))−Ψ3(k.[F ])
= k.(Ψ3′ ◦MQ,D ◦ IF,Q([F ])−Ψ3([F ]))

We shall now show that Ψ3′ ◦MQ,D ◦ IF,Q([F ])−Ψ3([F ]) is the class in K0Xq of a
rationnal point. Since the extension of scalars is injective on K0Xq, we can extend
the scalars to an extension E of F such that Xq is split - and therefore so is D.
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Then
ExtE/F (Ψ3′ ◦MQ,D ◦ IF,Q([F ])−Ψ3([F ]))
= Ψ3′ ◦MQE ,DE

◦ IE,QE
◦ ExtE/F ([F ])−Ψ3 ◦ ExtE/F ([F ])

= Ψ3′ ◦MQE ,DE
◦ IE,QE

([E])−Ψ3([E])
= Ψ3′ ◦ 2ME,DE

([E])−Ψ3([E])
= 2Ψ3′ ◦ME,DE

([E])−Ψ3([E])
and in the split case, we already now that Ψ3′ ◦MF,D is the cup-product by D and
that Ψ3 is the cup-product by H3 (see (19)). As 2D −H3 = Q, we get

Θ ◦ ((p2)|VK1D)−1(k) = k.Q
= π−1

∗ (k)

This ends the proof of Proposition 3.25. 2

Corollary 3.27. The morphism Θ induces an isomorphism VK1D → K1X
(4)
q .

Proof: This follows from the fact that α is an isomorphism and that β and Θ
are injective. 2

Corollary 3.28. The morphism H4(Xq,K5) → K1X
(4)
q is an isomorphism and

the differential d2,−4
2 is zero in the B.G.Q. spectral sequence.

We shall now prove the result for which we needed corollary 3.28.

Proposition 3.29. Let X = Xq or X = Xq′ .

(1) In the B.G.Q. spectral sequence for X, the differential d0,−3
2 is zero.

(2) K2X
2/3 ' H2(X,K4).

Proof: Point 2 is a consequence of point 1 and, for Xq, corollary 3.28 (d2,−4
2

is trivialy zero for Xq′). Let us therefore prove point 1. Since all the differen-
tials are killed by 4 by a transfer argument, we can and will assume that all the
groups are localized at the prime 2. The coniveau spectral sequence in étale motivic
cohomology in weight 3 gives the surjection

pX : H3
ét(X,Z(3)) // // H0(X,KM

3 )

The spectral sequence defined in [7, Theorem 4.4], that we have already used in
section 1, yields the exact sequence - here is the place where we use the localization
at 2 -

0−→H3
ét(F,Z(3))−→H3

ét(X,Z(3))−→H1
ét(F,Z(2))−→0

in which H3
ét(F,Z(3)) ' KM

3 (F ) and H1
ét(F,Z(2)) ' K3(F )ind. This exact se-

quence is split by a section given by the multiplication by a hyperplane section H.
The diagram

0 // H3
ét(F,Z(3))

opF

��

// H3
ét(X,Z(3))

pX

����

// H1
ét(F,Z(2))

spp
// 0

KM
3 (F ) H0(F,KM

3 ) // H0(X,KM
3 )

is commutative by functoriality of the spectral sequence. Again by functoriality,
we have the commutative diagram

H3
ét(F (X),Z(3))

pF (X)

��

H3
ét(X,Z(3))oo

pX

��
KM

3 (F (X)) H0(F (X),KM
3 ) H0(X,KM

3 )? _oo
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where the inclusion is by definition. Thus, pX ◦ s = 0 for H is zero at the generic
point. The top row is exact, so by diagram chase, the morphism

KM
3 (F )−→H0(X,KM

3 )

is surjective. Another diagram chase in the commutative diagram with exact rows

0 // KM
3 (F ) //

����

K3(F )

g

��

// K3(F )nd

o
��

// 0

0 // H0(X,KM
3 ) // H0(X,K3) // H0(X, (K3)nd)

yields that the morphism K3(F )−→H0(X,K3) is surjective. Since it factors through
K3(X), its composition with d0,−3

2 has to be zero, therefore d0,−3
2 is zero. 2

4. The group SK2D

We shall now collect the results obtained in the preceding sections to prove the
main result of this article (see introduction). As in section 3, let K be the function
field of the Severi-Brauer variety of D.

From corollary 3.15, points 3 and 4, Theorem 3.9 and corollary 3.10, we get the
commutative diagram

K2F ⊕K2D
Ψ2⊕Ψ2′// // K2X

(2/3)
q

i∗

��
K2F ⊕K2D

Ψ′
2⊕Ψ′

2′// // K2X
(2/3)
q′

where Ψ2, Ψ2′ , Ψ′
2 and Ψ′

2′ are just the the morphisms Ψ2, Ψ2′ , Ψ′
2 and Ψ′

2′ fol-
lowed by the projection to the quotient. Since the reduced norm commutes to the
extension of scalars and K2F injects in K2K, SK2D ' ker(K2D → K2DK). We
therefore get a commutative diagram

SK2D
m //

m′

))RRRRRRRRRRRRRRR ker(K2X
(2/3)
q → K2(Xq)

(2/3)
K )

��
ker(K2X

(2/3)
q′ → K2(Xq′)

(2/3)
K ).

Furthermore, the top horizontal arrow is surjective because Ψ2 ⊕Ψ2′ is an isomor-
phism in the split case (see corollary 3.15, point 5). Proposition 3.29 yields that
ker(K2X

(2/3)
q → K2(Xq)

(2/3)
K ) ' ker(H2(Xq,K4) → H2((Xq)K ,K4)) and (4) is an

isomorphism between the latter and ker(H5(F,Z/2) → H5(F (q),Z/2)) when F
contains an algebraically closed subfield. So we already have the exact sequence

(21) SK2D−→H5(F,Z/2)−→H5(F (q),Z/2).

The following lemma is well known.

Lemma 4.1. Let φ and φ′ be quadratic forms such that φ becomes isotropic over
F (φ′), then there is an inclusion (inside Hn(F,Z/2))

ker(Hn(F,Z/2) → Hn(F (φ),Z/2)) ⊂ ker(Hn(F,Z/2) → Hn(F (φ′),Z/2))
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This yields

ker(H5(F,Z/2) → H5(F (q),Z/2)) ⊂ ker(H5(F,Z/2) → H5(F (q′),Z/2))

and therefore

ker(K2X
(2/3)
q → K2(X(2/3)

q )K) ↪→ ker(K2X
(2/3)
q′ → K2(Xq′)

(2/3)
K ).

Thus, the morphisms m and m′ have the same kernel.

Lemma 4.2. For i = 0, 1, 2, let p1 : KiF ⊕KiD → KiF be the projection on the
first factor. Then the composition

H3(Xq′ ,K3+i) // // KiX
(3)
q′

� � // KiX
(2)
q′

(Ψ′
2⊕Ψ′

2′ )
−1

// KiF ⊕KiD
p1 // // KiF

is minus the norm map NXq′ . It becomes an isomorphism in the split case.

Proof: This can be checked after extension the scalars to K. Using Propo-
sition 3.16, point 1, the result follows from equalities (20), (H′)2 = 2D′ − Q′,
π∗(D′) = 0 and π∗(Q) = [F ]. The norm becomes an isomorphism in the split case
because the B.G.Q. spectral sequence degenerates, thus H3+i(Xq′ ,Ki) ' KiX

(3)
q′ ,

and KiX
(3)
q′ ' KiF by the map given above (see the proof of Proposition 3.12). 2

Since the norm NXq′ is an isomorphism in the split case and since K2F injects
in K2K, we can identify ker NXq′ with ker(H3(Xq′ ,K5) → H3((Xq′)K ,K5)), and
we get the diagram with exact rows

H3(Xq′ ,K5) //

��

K2X
(2)
q′

//

��

K2X
(2/3)
q′

//

��

0

0 // H3((Xq′)K ,K5) // K2(Xq′)
(2)
K

// K2(Xq′)
(2/3)
K

// 0.

The kernels of the vertical maps are therefore related through an exact sequence

ker NXq′
// SK2D

m′
// ker(K2X

(2/3)
q′ → K2(Xq′)

(2/3)
K )

which, pasted with Sequence (21), gives rise to the desired exact sequence, in the
case of a perfect field.

In the case where F is not perfect, we first obtain the sequence for a perfect
closure Fp of F , then observe that all the maps in the sequence are defined for any
F , except maybe the one from SK2D to H5(F,Z/2), which uses section 1. But
since H5(F,Z/2) = H5(Fp,Z/2), we can define this map too, and it is easy to show
that it goes to the kernel of the extension of scalars to F (q). It remains to check
that the sequence obtained for F is exact. This is obtained by a transfer argument:
the groups kerNq′ , SK2D and H5(F,Z/2) are 2-torsion, so a diagram chase gives
the result, since every finite subextension of Fp is of degree prime to 2.

Remark 4.3. By the same method applied to K1, Rost’s theorem can be established
(in this case, ker NXq′ is zero, by another theorem of Rost).
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