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BASES OF TOTAL WITT GROUPS AND LAX-SIMILITUDE

PAUL BALMER AND BAPTISTE CALMÈS

Abstract. We explain how to work with total Witt groups, more specifically,
how to circumvent the classical embarrassment of making choices for line bun-
dles up to isomorphisms and up to squares.
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Introduction

After completing our computation of the total Witt group Wtot(Gr(d, n)) of
Grassmannians in [3] and submitting that paper for publication, a somewhat rigid
anonymous reader insisted on the problem that the total Witt group of a scheme Y

Wtot(Y ) =
⊕

[L]∈Pic(Y )/2

W∗(Y, L)

did not formally exist, because the group W∗(Y, L) depends on a choice of a rep-
resentative L of [L] ∈ Pic(Y )/2 up to non-unique isomorphism. Although formally
correct, it might have occurred to a less rigid or less anonymous human being that
this problem had nothing to do with Grassmannians per se, neither much to do
with triangular Witt groups, and exists since the foundations of Witt groups of
schemes themselves, starting with Knebusch [5].

For us, two alternatives presented themselves, beyond cowardly withdrawing the
paper. First, we could trace all twists in use in the special case of Grassman-
nians, basically turning a reasonably short and hopefully readable paper about
Witt groups into an obscure mess about line bundles. Or, alternatively, we could
write another paper in which we prove that the choices do not really matter, for
Grassmannians and much more generally, providing a tool for seven generations of
Witt groupists to use happily ever after. For some reason, we went for the second
alternative. The outcome is what the reader holds in her electronic hands.
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2 PAUL BALMER AND BAPTISTE CALMÈS

Convention. Throughout the paper, X and Y stand for regular noetherian sepa-
rated schemes over Z[ 12 ], of finite Krull dimension. (See however Remark 7.4.)

For i ∈ Z and for a line bundle L over Y , the Witt group Wi
Z(Y, L) is the

triangular Witt group of the derived category Db
Z(VB(Y )) of bounded complexes

of vector bundles over Y with homology supported in a closed subset Z ⊂ Y ,
with respect to the usual duality derived from HomOY

(−, L) and shifted i times.
See [1, 2]. Of course, Wi(Y, L) stands for Wi

Y (Y, L). The line bundle L is often
called the twist of the duality.

These Witt groups are periodic in two elementary ways. First they are 4-periodic
in shift, i.e. there is an extremely natural isomorphism

Wi
Z(Y, L)

∼= Wi+4
Z (Y, L)

by [1, Proposition 2.14]. On the other hand, we have a product

Wi1
Z1
(Y, L1)×Wi2

Z2
(Y, L2)→Wi1+i2

Z1∩Z2
(Y, L1 ⊗ L2)

by [4] that recovers the usual multiplication on the classical Witt group W(Y ) =

W0(Y,OY ) and that turns any Wi
Z(Y, L) into a W(Y )-module. For any line bundle

M over Y , this product yields the other periodicity isomorphism, called the square-
periodicity isomorphism,

(1) Wi
Z(Y, L)

∼
−→Wi

Z(Y,M
⊗2 ⊗ L)

and given by multiplication with the Witt class [M
∼
→M∨⊗M⊗2] ∈W0(Y,M⊗2),

where M∨ denotes the dual of M . Finally, any isomorphism L
∼
→ L′ induces

isomorphisms Wi
Z(Y, L)

∼
−→Wi

Z(Y, L
′) in the obvious way.

From these isomorphisms, it is clear that all the Witt groups of a scheme can be
recovered once we know the Witt groups Wi

Z(Y, L) for L and i varying in a set of
representatives of Pic(Y )/2 and Z/4 respectively. The direct sum of such groups
is what is usually called “the” total Witt group of the scheme Y (with support
in Z). However, this total group is not canonical since it involves the choice of a
line bundle L for every class in Pic(Y )/2. Furthermore, if we want to turn this total
Witt group into a ring, using the above product, we need to choose isomorphisms
between L1 ⊗ L2 and the chosen line bundle representing [L1 ⊗ L2] in Pic(Y )/2,
including the choice of “square roots” (for the periodicity modulo 2), and so on. All
these choices should further satisfy some compatibilities, of the highest sex appeal.
Last not least, it is unclear how to make such choices in a functorial way, when
varying the scheme, under pull-back and under push-forward.

To circumvent such technical obstacles, we propose a way of keeping the intuitive
simplification allowed by the total Witt group, yet avoiding the unpleasant use of a
non-canonical object. Of course, it is unfortunately not true in full generality that
one can completely ignore choices. Here, we provide a large class SX of schemes Y
over a given base X (Definition 4.1), in which it makes rigorous sense to say that
a collection of Witt classes over Y form what we usually call a “basis of Wtot(Y )
over Wtot(X)”.

The initial concept is that of alignment A : L1 ❀ L2 between line bundles
(Section 1) and the alignment isomorphism

A	 : W∗(Y, L1)
∼
→W∗(Y, L2)

induced on Witt groups (Section 2). We show how these interact with the two func-
torialities of Witt theory : pull-back and conditional push-forward. This leads us to
introduce lax pull-backs and lax push-forwards (Section 3) which are heuristically
pull-backs and push-forwards in which one only cares about twists in Pic /2. This
mathematical peace of mind is formally provided by Theorem 4.4, where we show
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that a change of line bundle in some Ȳ over Y can be descended to Y , as long as
both Ȳ and Y belong to our category SX .

In Sections 5 and 6, we generalize the action of “Wtot(X)” on “Wtot(Y )” for
Y ∈ SX by again allowing alignments to move classes around. In this context, we
discuss the notion of “total basis”.

We then show how the fundamental geometric results, localization long exact
sequence, homotopy invariance and dévissage, behave with respect to the above
flexibility (Section 7) and we explain how to trace a total basis of the total Witt
group in such a localization sequence, without explicitly tracing the line bundles on
the nose but only their classes in Pic /2. See Theorem 7.1.

We have already made use of this formalism in the revised version of [3] and we
hope that other people computing total Witt groups will enjoy the therapy.

1. The category of quadratic alignments

1.1. Definition. Let L1 and L2 be line bundles on a scheme Y . We say that a pair
A = (M,φ) consisting of a line bundle M on Y and an isomorphism

φ : M⊗2 ⊗ L1
∼
−→ L2

is a (quadratic) alignment from L1 to L2. Such an alignment exists if and only if
[L1] = [L2] in Pic(Y )/2. We use the following short notation for alignments :

A : L1 ❀ L2 .

1.2.Definition. We say that two alignments A = (M,φ) and A′ = (M ′, φ′) from L1

to L2 are isomorphic, denoted A ≃ A′, if there exists an isomorphism τ : M
∼
→M ′

such that the following diagram commutes :

M⊗2 ⊗ L1
φ

//

τ⊗2⊗1

��

L2

M ′⊗2
⊗ L1

φ′

// L2 .

There is only a set of isomorphism classes of alignments from L1 to L2 :

AlY (L1, L2) := {A : L1 ❀ L2}/≃ .

We denote by [A]≃ in Al(L1, L2) the isomorphism class of an alignment A : L1 ❀

L2. We define the alignment category, denoted by

Aℓ(Y ) ,

to be the category of line bundles over Y with AlY (L1, L2) as morphism sets from

L1 to L2. The composition of L1
A1
❀ L2

A2
❀ L3 is defined as follows. If, say,

Ai = (Mi, φi) with φi : M
⊗2
i ⊗ Li

∼
→ Li+1 for i = 1, 2, then

A2 ◦A1 :=
(

M2 ⊗M1 , φ3) : L1 ❀ L3

where φ3 is the obvious isomorphism (essentially φ2 ◦ φ1)

(M2 ⊗M1)
⊗2 ⊗ L1

∼
−→
(23)

M2
⊗2 ⊗M⊗2

1 ⊗ L1
∼
−→
1⊗φ1

M2
⊗2 ⊗ L2

∼
−→
φ2

L3 .

Composition is compatible with isomorphisms and is associative up to isomorphism
hence turns Aℓ(Y ) into a category, in which idL is given by

(

OY , O⊗2
Y ⊗ L ∼= L

)

.

1.3. Lemma. The category Aℓ(Y ) is a groupoid, i.e. for every alignment A : L1 ❀

L2 there exists A′ : L2 ❀ L1 with A ◦ A′ ≃ idL2 and A′ ◦ A ≃ idL1 , that is,
[A′]≃ = [A]−1

≃ . In particular, given A1 and A2 with same source (resp. same target)
there always exists an alignment B such that B ◦A1 ≃ A2 (resp. A1 ◦B ≃ A2).
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Proof. If A = (M,φ) take A′ = (M−1, φ′) : L2 ❀ L1 where φ′ is (M−1)⊗2 ⊗ φ−1

followed by the canonical isomorphism (M−1)⊗2 ⊗M⊗2 ⊗ L1
∼= L1. �

1.4. Definition. We can also tensor alignments : (L1
A1
❀ L′

1)⊗ (L2
A2
❀ L′

2). If, say,

Ai = (Mi, φi) with φi : M
⊗2
i ⊗ Li

∼
→ L′

i for i = 1, 2, then their tensor product

A1 ⊗A2 :=
(

M1 ⊗M2 , φ4

)

: L1 ⊗ L2 ❀ L′
1 ⊗ L′

2

is given by the obvious isomorphism (φ4 is morally essentially φ1 ⊗ φ2)

(M1 ⊗M2)
⊗2 ⊗ L1 ⊗ L2

∼=
−→
(2453)

M1
⊗2 ⊗ L1 ⊗M2

⊗2 ⊗ L2
∼
−→

φ1⊗φ2

L′
1 ⊗ L′

2 .

The reader can verify that this tensor product preserves isomorphisms of alignments
and turns Aℓ(Y ) into a symmetric monoidal category.

1.5. Lemma. Every line bundle L over Y is invertible in Aℓ(Y ) for this ⊗. In

particular, the map L⊗− induces a bijection AlY (L1, L2)
∼
→ AlY (L⊗L1 , L⊗L2)

and similarly for −⊗ L.

Proof. Indeed, L−1 is also the inverse of L in Aℓ(Y ). �

Finally, the following remark contains some functoriality of alignments with re-
spect to the scheme Y :

1.6. Remark. Given a morphism f : Ȳ → Y and an alignment A = (M,φ) : L1 ❀

L2 on Y , there is an obvious alignment f∗(A) := (f∗M, f∗φ) : f∗L1 ❀ f∗L2. The
reader will verify functoriality of this construction : A ≃ A′ =⇒ f∗A ≃ f∗A′ and
f∗(A2 ◦ A1) ≃ f∗(A2) ◦ f

∗(A1) and f∗(A1 ⊗ A2) ≃ f∗A1 ⊗ f∗A2 and (gf)∗(A) ≃
f∗(g∗(A)). So we get a well-defined ⊗-functor

f∗ : Aℓ(Y ) −→ Aℓ(Ȳ )

such that (gf)∗ ≃ f∗g∗.

If Y and Ȳ are regular and f : Ȳ → Y is proper, with relative canonical bun-
dle ωf , and if A = (M,φ) : L1 ❀ L2 is an alignment on Y , we define an alignment
f !(A) : ωf ⊗ f∗L1 ❀ ωf ⊗ f∗L2 on Ȳ by

(2) f !(A) =
(

f∗M , f !φ2

)

where f !φ2 is the canonical isomorphism

f∗M⊗2⊗ωf⊗f
∗L1

∼
−→
(123)

ωf⊗f
∗M⊗2⊗f∗L1

∼= ωf⊗f
∗
(

M⊗2⊗L1

) ∼
−→

1⊗f∗φ
ωf⊗f

∗L2 .

Using the monoidal structure, this can be stated as f !(A) = idωf
⊗f∗(A). In

particular, f ! is as functorial as f∗ was, except that f ! is not monoidal.

2. Alignment isomorphisms on Witt groups

2.1. Notation. Let φ : L
∼
→ L′ be an isomorphism of line bundles on a scheme Y .

The isomorphism induced on Witt groups is denoted by

φ : Wi
Z(Y, L)

∼
→Wi

Z(Y, L
′) .

The square periodicity isomorphism associated to a line bundle M is denoted by

perM : Wi
Z(Y, L)

∼
→Wi

Z(Y,M
⊗2 ⊗ L).

2.2. Remark. Here are some easy compatibilities between those isomorphisms,
that we leave to the reader. We use the obvious notation.

(i) φ′ ◦ φ = φ′ ◦ φ.
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(ii) perM2
◦perM1

= (23) ◦perM2⊗M1
for (M2⊗M1)

⊗2⊗L
∼=
→
(23)

M2
⊗2⊗M⊗2

1 ⊗L.

(iii) perM ◦ φ = (1⊗ φ) ◦ perM where 1⊗ φ : M⊗2 ⊗ L1
∼
→M⊗2 ⊗ L2.

(iv) perM ′ = (τ⊗2 ⊗ 1) ◦ perM , for every isomorphism τ : M
∼
→M ′.

It follows that any composition of perMi
and φj (in any order) can always be

reduced to one composition of the form φ ◦ perM . This is the true reason for the
notion of alignment introduced in Section 1 and yields naturally :

2.3. Definition. For every alignment A = (M,φ) : L1 ❀ L2 (Definition 1.1), i.e.

φ : M⊗2 ⊗ L1
∼
→ L2, we define an isomorphism A	 := φ ◦ perM

A	 : W∗
Z(Y, L1)

∼
−→W∗

Z(Y, L2)

that we call the alignment isomorphism (on Witt groups) associated to the align-
ment A : L1 ❀ L2.

2.4. Example. To a unit u ∈ OY (Y )× we can associate two things : An isomor-

phism u· : L
∼
→ L for any line bundle L and a Witt class 〈u〉 in W(Y ) = W0(Y,OY ).

It is an easy exercise to verify that multiplication by 〈u〉 on Witt groups is the same
as the alignment isomorphism (u·) = Au

	, where Au =
(

OY , (u·)
)

.

With this example in mind, it seems reasonable to use the following terminology :

2.5. Definition. Let us say that two Witt classes w1 ∈ Wj
Z(Y, L1) and w2 ∈

Wj
Z(Y, L2) are lax-similar if there exists an alignment A : L1 ❀ L2 such that

A	(w1) = w2. This is an equivalence relation, that we denote by

w1 ! w2 .

2.6. Remark. We have w ! 0 if and only if w = 0. However, Witt classes up to
lax-similitude do not form a group, as we already know from ordinary similitude.

2.7. Proposition. The assignment A 7→ A	 respects the structures of Section 1 :

(a) Isomorphic alignments A ≃ A′ induce the same alignment isomorphism
A	 = A′	 on Witt groups. Hence (−)	 is well-defined on Aℓ(Y ).

(b) Given two alignments L1
A1
❀ L2

A2
❀ L3, we have

(A2 ◦A1)
	 = A2

	 ◦A1
	

on Witt groups. Hence (−)	 is functorial.

(c) Given two alignments Ai : Li ❀ L′
i and two Witt classes wi ∈Wji

Zi
(Y, Li),

for i = 1, 2, we have

(A1 ⊗A2)
	 (w1 · w2) =

(

A1
	(w1)

)

·
(

A2
	(w2)

)

.

in Wj1+j2
Z1∩Z2

(Y, L′
1 ⊗ L′

2). Hence (−)	 is (somewhat) monoidal.

Proof. Part (a) follows from Remark 2.2 (i) and (iv). For (b), contemplate

W∗
Z(Y, L1)

perM1
//

perM2⊗M1

��

W∗
Z(Y,M

⊗2
1 ⊗ L1)

φ1
//

perM2

��

W∗
Z(Y, L2)

perM2

��

W∗
Z(Y, (M2 ⊗M1)

⊗2
⊗ L1)

(23)
// W∗

Z(Y,M
⊗2
2 ⊗M⊗2

1 ⊗ L1)
1⊗φ1

// W∗
Z(Y,M

⊗2
2 ⊗ L2)

This diagram commutes by Remark 2.2 (ii) and (iii). Post-composing the two

outside compositions with φ2 : W∗
Z(Y,M2

⊗2 ⊗ L2)
∼
→ W∗

Z(Y, L3) yields the result.
Part (c) is straightforward from the definition of the Witt group product [4]. �
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2.8. Remark. Since Aℓ(Y ) is a groupoid (Lemma 1.3), Proposition 2.7 (b) gives
us that any zig-zag of alignment isomorphisms (on a given scheme) can be re-
alized by one single alignment isomorphism. Note however that there might be
non-isomorphic alignments from L1 to L2, hence possibly non-equal alignment iso-
morphisms on Witt groups.

Compatibility of A	 with morphisms f : Ȳ → Y is the subject of Section 3.

2.9. Remark. It is easy to verify that for every alignment A : L1 ❀ L2 the align-
ment isomorphism A	 : W∗

Z(Y, L1)
∼
→ W∗

Z(Y, L2) commutes with the periodicity

isomorphism W∗ ∼
→ W∗+4, the latter being simply induced on the underlying tri-

angulated category by the square of the shift Σ2. This automorphism Σ2 commutes
with all operations involved in A	. Note that Σ2 has no hidden sign either.

2.10. Remark. Alignment isomorphisms are compatible with localization long ex-
act sequences. Compatibility of A	 with restriction to an open subscheme is a
special case of Corollary 3.2 below. Let us discuss the other two types of homo-
morphisms.

(1) Let Z ⊂ Z ′ be closed subsets of Y . Then extension-of-support e : W∗
Z(Y, L)→

W∗
Z′(Y, L) obviously commutes with alignment isomorphism A	.

(2) For the connecting homomorphism, let U = Y r Z and consider A : L ❀ L′

over Y and its obvious restrictionA|U
: L|U

❀ L′
|U
. Then the following diagram

Wj(U,L|U
)

∂
//

A|U
	

��

Wj+1
Z (Y, L)

A	

��

Wj(U,L′
|U
)

∂
// Wj+1

Z (Y, L′)

commutes. Indeed, if A = (M,φ), then A	 = φ◦perM and ∂ clearly commutes

with φ. It is proved in [4] that ∂ is W∗(Y )-linear, which explains why it
commutes with perM .

3. Lax pull-back and lax push-forward

We assume for simplicity (in the treatment of the push-forward) that all schemes
Y , Ȳ , etc., are smooth over our regular base X .

Given a morphism f : Ȳ → Y and a closed subset Z of Y , we have a pull-back

f∗ : W∗
Z(Y, L)→W∗

f−1(Z)(Ȳ , f∗L) .

On the other hand, when f is proper and has constant relative dimension dim(f)
(the latter is automatic if Ȳ is connected) and has relative canonical bundle ωf , we
have a push-forward homomorphism for every closed subset Z̄ ⊂ Ȳ

f∗ : W
∗+dim(f)

Z̄

(

Ȳ , ωf ⊗ f∗L
)

−→ W∗
f(Z̄)(Y, L) .

3.1. Remark. Continuing Remark 2.2, for every morphism of schemes f : Ȳ → Y ,
we have naturality :

(v) f∗ ◦ φ = f∗φ ◦ f∗.

(vi) f∗ ◦ perM = perf∗M ◦ f
∗.

Finally, if f : Ȳ → Y is proper with relative canonical bundle ωf , we have :

(vii) φ ◦ f∗ = f∗ ◦ (1⊗ f∗φ) for the canonical 1⊗ f∗φ : ωf ⊗ f∗L1
∼
→ ωf ⊗ f∗L2.

(viii) perM ◦ f∗ = f∗ ◦ (123) ◦ perf∗M by the projection formula, where (123) :

(f∗M)⊗2⊗ωf⊗f
∗L1

∼=
−→ ωf⊗f

∗
(

M⊗2⊗L1

)

is the canonical isomorphism.
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3.2. Corollary. Recall Remark 1.6 for f∗ and f ! on alignments. For f : Ȳ → Y
and for an alignment A = (M,φ) : L1 ❀ L2 on Y , we have on Witt groups

f∗ ◦A	 = (f∗A)	 ◦ f∗ .

When f is proper, we have on Witt groups

A	 ◦ f∗ = f∗ ◦ (f
!A)	 .

Proof. This is a compact form of Remark 3.1. �

3.3.Remark. Given a morphism f : Ȳ → Y , we can compose the pull-back f∗ with
alignment isomorphisms on Y and on Ȳ . By Corollary 3.2, any such composition
can be brought down to one of the form Ā	 ◦ f∗ for some alignment Ā on Ȳ .
Similarly, one can combine the push-forward f∗ with alignment isomorphisms on Y
and Ȳ and again the alignment isomorphisms on Y are redundant, i.e. such a
composition always boils down to one of the form f∗ ◦ Ā

	 for some alignment Ā
on Ȳ . Let us give names to those generalized pull-back and push-forward.

3.4. Definition. Let f : Ȳ → Y be a morphism. Let L and L̄ be line bundles on
Y and Ȳ respectively and let Ā : f∗L ❀ L̄ be an alignment on Ȳ (Definition 1.1).
We define the lax pull-back homomorphism from W∗

Z(Y, L) to W∗
f−1(Z)(Ȳ , L̄) by

PullĀ,f := Ā	 ◦ f∗ : W∗
Z(Y, L) −→W∗

f−1(Z)(Ȳ , f∗L)
∼
−→W∗

f−1(Z)(Ȳ , L̄) .

3.5. Definition. Let f : Ȳ → Y be a proper morphism with relative canonical
bundle ωf and relative dimension d = dim(f). Let L and L̄ be line bundles on Y
and Ȳ respectively, and let Ā : L̄ ❀ ωf ⊗f∗L be an alignment on Ȳ (note ωf here).

We define the lax push-forward homomorphism from W∗+d
Z̄

(Ȳ , L̄) to W∗
f(Z̄)(Y, L)

by

Pushf,Ā := f∗ ◦ Ā
	 : W∗+d

Z̄
(Ȳ , L̄)

∼
−→W∗+d

Z̄
(Ȳ , ωf ⊗ f∗L) −→W∗

f(Z̄)(Y, L) .

By Proposition 2.7 (a), both PullĀ,f and Pushf,Ā only depend on the isomor-

phism class of Ā.

3.6. Proposition. For composable Ỹ
g
→ Ȳ

f
→ Y and for alignments Ā on Ȳ and

Ã on Ỹ such that Ã and g∗Ā are composable, we have

Pull
Ã, g

◦ PullĀ, f = Pull
Ã ◦ (g∗Ā) , fg

.

If instead g!Ā and Ã are composable and if f and g are moreover proper, then

Pushf, Ā ◦ Pushg, Ã
= Push

fg , (g!Ā) ◦ Ã

Proof. Direct by Corollary 3.2, Definitions 3.4 and 3.5 and Proposition 2.7 (b). �

4. Descending alignments

Given a morphism f : Ȳ → Y , it might happen that two line bundles L1 and L2

on Y have f∗L1 and f∗L2 aligned over Ȳ , in the sense of Definition 1.1, without
necessarily being aligned over Y . This can cause sorrow in the taverns. We propose
a simple solution, which will be convenient in applications.

4.1.Definition. Recall our separated, noetherian regular base scheme X over Z[ 12 ].
Let Y be a scheme over X . We denote by πY : Y → X the structure morphism and
by PicX(Y ) the cokernel of π∗

Y : Pic(X)→ Pic(Y ). Consider the full subcategory

SX

of smooth X-schemes πY : Y → X (with morphisms over X of course) such that :



8 PAUL BALMER AND BAPTISTE CALMÈS

(I) The map π∗
Y : Pic(X)→ Pic(Y ) is injective.

(II) The abelian group PicX(Y ) = Pic(Y )/π∗
Y

(

Pic(X)
)

has no 2-torsion.

(III) The map π∗
Y : Gm(X)→ Gm(Y )/Gm(Y )2 is surjective.

4.2.Remark. Note thatX itself is in SX . Projective spaces overX , Grassmannians
and various flag varieties over X are in SX , as explained in [3]. If X is local (e.g.
the spectrum of a field) and thus has trivial Picard group, then projective varieties
over X with no 2-torsion in their Picard group are in SX .

Assumptions (I) and (II) allow an easy chase :

4.3. Lemma. Let f : Ȳ → Y be a morphism in SX . Then :

(a) The homomorphism f∗ : Pic(Y ) → Pic(Ȳ ) induces an isomorphism on 2-

torsion subgroups 2Pic(Y )
∼
→ 2Pic(Ȳ ).

(b) The sequence 0→ Pic(X)/2→ Pic(Y )/2→ PicX(Y )/2→ 0 is exact.

(c) The homomorphism Pic(Y )/2 −→ PicX(Y )/2 ⊕ Pic(Ȳ )/2 is injective.

(d) If a line bundle L̄ on Ȳ is such that [L̄] = [f∗L] in PicX(Ȳ )/2 for some
L over Y , then there exists L′ over Y with [L′] = [L] in PicX(Y )/2 and
[L̄] = [f∗L′] in Pic(Ȳ )/2 already.

Proof. Since πY f = πȲ it suffices to prove (a) for f = πY : Y → X . Multiplication
by 2 yields an endomorphism of the following short sequence of abelian groups

0→ Pic(X)
π∗
Y−→ Pic(Y ) −→ PicX(Y )→ 0,

which is exact by (I) above. The Snake Lemma and Assumption (II) give (a)
and (b). For (c), it suffices to compare the exact sequences (b) for Y and Ȳ via f∗ :

0 // Pic(X)/2 // Pic(Y )/2 //

f∗

��

PicX(Y )/2 //

f∗

��

0

0 // Pic(X)/2 // Pic(Ȳ )/2 // PicX(Ȳ )/2 // 0

to chase the wanted injectivity (in fact, the right-hand square is cartesian). For (d),
if there exists a line bundle K on X with [L̄] = [f∗L ⊗ π∗

Ȳ
K] = [f∗(L ⊗ π∗

Y K)]

in Pic(Ȳ )/2, take L′ := L⊗π∗
Y K, which is in the same class as L in PicX(Y )/2. �

Here is the announced descent of alignments along morphisms Ȳ → Y in SX .

4.4. Theorem. Let f : Ȳ → Y be a morphism in SX . Let L1 and L2 be line bundles
on Y and let Ā : f∗L1 ❀ f∗L2 be an alignment on Ȳ (Definition 1.1). Suppose
that [L1] = [L2] in PicX(Y )/2. Then there exists an alignment A : L1 ❀ L2 on Y
and an isomorphism f∗A ≃ Ā on Ȳ (see Definition 1.2 and 1.6).

Proof. Write Ā = (M̄, φ̄) so that φ̄ is an isomorphism M̄⊗2 ⊗ f∗L1
∼
→ f∗L2 on Ȳ .

In particular, in the group Pic(Ȳ )/2, we have [f∗L1] = [f∗L2]. Since we also
assume [L1] = [L2] in PicX(Y )/2, we get by Lemma 4.3 (c) that [L1] = [L2] in

Pic(Y )/2. Hence there exists a line bundle M ′ over Y such that M ′⊗2
⊗ L1 ≃ L2.

Pulling-back to Ȳ , we get (f∗M ′)⊗2 ≃ M̄⊗2 over Ȳ . Hence [(f∗M ′) ⊗ M̄−1] ∈

2 Pic(Ȳ )
∼
← 2 Pic(Y ) by Lemma 4.3 (a). Hence there exists [M ′′] ∈ 2 Pic(Y ) such

that f∗(M ′ ⊗M ′′) ≃ M̄ . Defining M := M ′ ⊗M ′′ we now have

f∗M ≃ M̄ and also M⊗2 ⊗ L1 ≃ L2

since M ′⊗2
⊗ L1 ≃ L2 already and M ′′⊗2

is trivial.
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Now choose two isomorphisms τ̄0 : f∗M
∼
→ M̄ and φ0 : M⊗2 ⊗ L1

∼
→ L2, which

exist by the above construction, and consider the following diagram over Ȳ

(3)

(f∗M)⊗2 ⊗ f∗L1

τ̄⊗2
0 ⊗1

// M̄⊗2 ⊗ f∗L1

φ̄
��

f∗(M⊗2 ⊗ L1)
f∗φ0

// f∗L2 .

A priori, this only commutes up to a unit t ∈ Gm(Ȳ ), like every diagram of isomor-
phisms of line bundles. By Assumption (III), t = π∗

Ȳ
(u) · v2 for some u ∈ Gm(X)

and v ∈ Gm(Ȳ ). Hence we can define φ = π∗
Y (u) · φ0 and τ̄ = v−1 · τ̄0, so that φ

and τ̄ make Diagram (3) strictly commute (in place of φ0 and τ̄0 respectively, of
course).

Consider the alignment A := (M,φ) : L1 ❀ L2 on Y . The commutativity of (3)
precisely means f∗A ≃ Ā (see Remark 1.6). �

4.5. Corollary. Let f : Ȳ → Y be a proper morphism in SX . Let L1 and L2 be
line bundles on Y and Ā : ωf ⊗ f∗L1 ❀ ωf ⊗ f∗L2 be an alignment on Ȳ . Suppose
that [L1] = [L2] in PicX(Y )/2. Then there exists an alignment A : L1 ❀ L2 on Y
and an isomorphism f !A ≃ Ā on Ȳ (Remark 1.6).

Proof. Immediate from Theorem 4.4 since f ! = ωf ⊗ f∗ : Aℓ(Y ) → Aℓ(Ȳ ) and
since B̄ 7→ ωf ⊗ B̄ is a bijection by Lemma 1.5. �

The following two results turn the above descent of line bundle alignments into
descent of alignment isomorphisms on the level of Witt groups.

4.6. Proposition. Let f : Ȳ → Y be a morphism of schemes in SX . Let L1 and
L2 be line bundles on Y with [L1] = [L2] ∈ PicX(Y )/2. Let Ā1 : f∗L1 ❀ L̄ and
Ā2 : f∗L2 ❀ L̄ be two alignments with same target L̄ on Ȳ . Then there exists an
alignment A : L1 ❀ L2 on Y such that the following diagram commutes

W∗
Z(Y, L1)

PullĀ1,f &&◆
◆◆

◆◆
◆◆

◆◆
◆◆

A	

//❴❴❴❴❴❴❴❴❴❴ W∗
Z(Y, L2)

PullĀ2,fxx♣♣
♣♣
♣♣
♣♣
♣♣
♣

W∗
Z(Ȳ , L̄)

Proof. By Lemma 1.3, there exists an alignment Ā : f∗L1 ❀ f∗L2 on Ȳ such that
Ā2 ◦ Ā ≃ Ā1. By Theorem 4.4, there exists A : L1 ❀ L2 such that f∗A ≃ Ā.
So, Ā2 ◦ f

∗A ≃ Ā1. By Propositions 3.6 and 2.7 (a), we have PullĀ2,f ◦A
	 =

PullĀ2◦f∗A,f = PullĀ1,f . �

4.7. Proposition. Let f : Ȳ → Y be a proper morphism in SX . Let L1 and L2 be
line bundles on Y such that [L1] = [L2] ∈ PicX(Y )/2. Let Ā1 : L̄ ❀ ωf ⊗ f∗L1 and
Ā2 : L̄ ❀ ωf ⊗ f∗L2 be two alignments from the same source L̄ on Ȳ . Then there
exists an alignment A : L1 ❀ L2 on Y such that the following diagram commutes

W∗
Z(Ȳ , L̄)

Pushf,Ā1

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣ Pushf,Ā2

''◆
◆◆

◆◆
◆◆

◆◆
◆◆

W∗
Z(Y, L1)

A	

//❴❴❴❴❴❴❴❴❴❴ W∗
Z(Y, L2) .

Proof. By Corollary 4.5 for Ā = Ā2 ◦ Ā
−1
1 , there exists A : L1 ❀ L2 such that

f !A ◦ Ā1 ≃ Ā2. By Proposition 3.6, A	 ◦Pushf,Ā1
= Pushf,f !A◦Ā1

= Pushf,Ā2
. �
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4.8. Remark. Combined with Corollary 3.2, the last two propositions tell us that,
for a morphism f : Ȳ → Y in SX , it is not so important to know where a lax
pull-back PullĀ,f or a lax push-forward Pushf,Ā exactly lands, as long as we keep
track of classes in PicX(?)/2. Different choices can always be “realigned”.

5. Relative alignments and lax module structure

Now that we have a stable understanding of alignments, we introduce a relative
version of this notion, allowing a line bundle on the base X to intervene.

5.1. Definition. Let πY : Y → X be a scheme over X . We say that two line
bundles L1 and L2 over Y are (quadratically) X-aligned if [L1] = [L2] ∈ PicX(Y ) =
coker(π∗

Y : Pic(X)→ Pic(Y )/2). This amounts to the existence of a line bundle K
over X and an alignment π∗

Y K ⊗ L1 ❀ L2 as in Definition 1.1.
By extension, it will be very convenient to say that a Witt class w ∈W∗

Z(Y, L1)
is X-aligned with L2 when the line bundle L1 is X-aligned with L2.

Specifying a line bundle K over X , we say that L1 and L2 are K-aligned if
π∗
Y K⊗L1 is aligned with L2. Unfolding everything, this means that there exists an

alignmentA = (M,φ) : π∗
Y K⊗L1 ❀ L2, i.e. an isomorphism φ : M⊗2⊗π∗

Y K⊗L1
∼
→

L2. We call A a K-alignment of L1 with L2 and use the condensed notation

A : L1
❀

K
L2 .

5.2. Definition. Let A : L1
❀

K
L2 be a K-alignment in Y . We are going to define

a lax product or product realigned under A

− ·
A
− : Wi(X,K)×Wj

Z(Y, L1) −→Wi+j
Z (Y, L2) .

By Definition 2.3, there exists an alignment isomorphism A	 : W∗
Z(Y, π

∗
Y K ⊗

L1)
∼
−→ W∗

Z(Y, L2). Then for every Witt class λ ∈ Wi(X,K) on the base and

every Witt class w ∈Wj
Z(Y, L1) on Y , we define

λ ·
A
w := A	

(

π∗
Y (λ) · w

)

for the image in Wi+j
Z (Y, L2) of the product π

∗
Y (λ) ·w, under the alignment isomor-

phism A	. We call this the lax-structure of Wtot(X)-module on Wtot
Z (Y ).

5.3. Remark. Taking λ = 1 ∈ W(X), we see that λ ·A − = A	(−). So the above
homomorphisms λ ·A − generalize the alignment isomorphisms.

This action behaves nicely with respect to all possible alignment isomorphisms :

5.4. Lemma. Let A : L1
❀

K
L2 be a K-alignment so that we have the product ·A

of Definition 5.2. Let B : L2 ❀ L3, C : J ❀ K and D : L0 ❀ L1 be (plain)
alignments over Y , X and Y respectively. Then E := B ◦ A ◦

(

(π∗
Y C) ⊗ D

)

is a

J-alignment L0
❀

J
L3 on Y . For every λ ∈Wi(X, J) and w ∈Wj

Z(Y, L0) we have

B	
(

C	(λ) ·
A
D	(w)

)

= λ ·
E
w

in Wi+j
Z (Y, L3). In words, the lax product commutes with lax-similitude.
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Proof. A direct computation :

B	
(

C	(λ) ·
A
D	(w)

)

def
= B	 ◦A	

(

π∗
Y (C

	(λ)) ·D	(w)
)

3.2
= B	 ◦A	

(

(

(π∗
Y C)	(π∗

Y (λ))
)

·D	(w)
)

2.7(c)
= B	 ◦A	 ◦

(

(π∗
Y C)⊗D

)

	 (π∗
Y (λ) · w)

2.7(b)
=

(

B ◦A ◦
(

(π∗
Y C)⊗D

)

)

	 (π∗
Y (λ) · w)

def
= λ ·

E
w . �

The real question is whether this product λ ·A w depends significantly on the
K-alignment A : L1 ❀ L2, for L1 and L2 fixed. A priori, this might be the case.
However, our class of schemes SX (Definition 4.1) turns out to be well-behaved.

5.5. Lemma. Let Y be a scheme in SX . Let Ai : L1
❀

Ki
L2 be Ki-alignments over Y

(for the same L1 and L2), for i = 1, 2. Then there exits an alignment C : K1 ❀ K2

on X such that, for every λ1 ∈W∗(X,K1) and every w ∈W∗
Z(Y, L1), we have

λ1 ·
A1

w = λ2 ·
A2

w

in W∗
Z(Y, L2), where λ2 = C	(λ1) ∈W∗(X,K2).

Proof. In terms of plain alignments over Y , note that A1 : π∗
Y K1 ⊗ L1 ❀ L2 and

A2 : π∗
Y K2 ⊗ L1 ❀ L2 have the same target L2. By Lemma 1.3, there exists an

alignment A′ : π∗
Y K1 ⊗ L1 ❀ π∗

Y K2 ⊗ L1 such that A2 ◦ A
′ ≃ A1. Note that

L1 appears at the two ends of A′. So, by Lemma 1.5, there exists an alignment
A′′ : π∗

Y K1 ❀ π∗
Y K2 such that A′ ≃ A′′⊗L1. Finally, by Proposition 4.6 applied to

f = πY , there exists an alignment C : K1 ❀ K2 such that A′′ ≃ π∗
Y C. The result

follows from Lemma 5.4, applied to our C, and to B̄ := idL2 , D̄ := idL1 , A := A2,
checking that E is here A2 ◦ ((π

∗
Y C)⊗ L1) ≃ A2 ◦ (A

′′ ⊗ L1) ≃ A2 ◦A
′ ≃ A1. �

Let us a say a word about associativity of the lax-action.

5.6. Lemma. Let Y be an X-scheme and K1 and K2 be line bundles on X. Set
K3 := K2 ⊗ K1. Consider X-alignments A1 : L0

❀

K1
L1 and A2 : L1

❀

K2
L2 and

A3 : L0
❀

K3
L2 over Y . Then for any choice of two out of A1, A2 and A3, the third

can be constructed such that the following diagram commutes in Aℓ(Y ) :

(4)

π∗
Y (K2 ⊗K1)⊗ L0

1⊗A1
///o/o/o/o/o/o/o/o

A3
''

'g'g
'g'g

'g'g
'g

π∗
Y K2 ⊗ L1

A2
yy y9

y9
y9
y9
y9
y9

L2

Then, for every w ∈Wj
Z(Y, L0), λ1 ∈Wi1(X,K1) and λ2 ∈Wi2(X,K2), we have

λ2 ·
A2

(

λ1 ·
A1

w
)

=
(

λ2 · λ1

)

·
A3

w

in Wi1+i2+j
Z (Y, L2).

Proof. The first part follows from Lemmas 1.3 and 1.5. The rest is direct :

λ2 ·A2

(

λ1 ·A1 w
)

= A2
	
(

π∗
Y λ2 · A1

	(π∗
Y λ1 · w)

)

by definition
= A2

	 ◦ (1⊗A1)
	
(

π∗
Y λ2 · π

∗
Y λ1 · w

)

by Proposition 2.7 (c)
= A3

	(π∗
Y λ2 · π

∗
Y λ1 · w) by (4) and Prop. 2.7

= A3
	
(

π∗
Y (λ2 · λ1) · w

)

π∗ is a ring morphism
=

(

λ2 · λ1

)

·A3 w by definition. �

Let us now discuss the lax-linearity of lax pull-back and lax push-forward.
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5.7. Lemma. Let f : Ȳ → Y be a morphism in SX and Z ⊂ Y be closed. Consider
two lax pull-backs (Definition 3.4) :

PullĀ,f : W∗
Z(Y, L)→W∗

f−1Z(Ȳ , L̄) and PullB̄,f : W∗
Z(Y,M)→W∗

f−1Z(Ȳ , M̄)

for two alignments Ā : f∗L ❀ L̄ and B̄ : f∗M ❀ M̄ over Ȳ . Suppose that the line
bundles L and M over Y are X-aligned, i.e. [L] = [M ] in PicX(Y )/2.

(a) For every K-alignment C : L❀
K
M over Y , there exists a K-alignment C̄ :

L̄❀
K
M̄ over Ȳ such that for all λ ∈W∗(X,K) and all w ∈W∗

Z(Y, L)

PullB̄,f

(

λ ·
C
w) = λ ·

C̄

(

PullĀ,f(w)
)

in W∗
f−1Z(Ȳ , M̄) .

(b) For every K-alignment C̄ : L̄❀
K
M̄ over Ȳ , there exists a K-alignment C :

L❀
K
M over Y such that the very same equation holds (maybe better read

from right to left this time).

Proof. For (a), use Lemma 1.3 to construct C̄ such that B̄ ◦ f∗C ≃ C̄ ◦ (id⊗Ā),
i.e. solve the following left-hand square :

π∗
Ȳ
K ⊗ f∗L

f∗C
///o/o/o

id⊗Ā
��
�O
�O

f∗M

B̄
��
�O
�O

π∗
Ȳ
K ⊗ L̄

∃ C̄
///o/o/o/o M̄

π∗
Ȳ
K ⊗ f∗L

∃ D̄
///o/o/o

id⊗Ā
��
�O
�O

f∗M

B̄
��
�O
�O

π∗
Ȳ
K ⊗ L̄

C̄
///o/o/o/o M̄

For (b), first solve the above right-hand square to find D̄ and use Theorem 4.4 to
find C : π∗

Y K ⊗ L ❀ M such that D̄ ≃ f∗C. In both cases we have

(5) B̄ ◦ f∗C ≃ C̄ ◦ (id⊗Ā) .

Then compute

PullB̄,f

(

λ ·C w) = B̄	 ◦ f∗ ◦ C	(π∗
Y (λ) · w) by definition

= B̄	 ◦ (f∗C)	 ◦ f∗(π∗
Y (λ) · w) by Corollary 3.2

= B̄	 ◦ (f∗C)	
(

π∗
Ȳ
(λ) · f∗(w)

)

f∗ is a ring homomorphism
= C̄	 ◦ (id⊗Ā)	

(

π∗
Ȳ
(λ) · f∗(w)

)

by (5) and Proposition 2.7
= C̄	

(

π∗
Ȳ
(λ) · (Ā	 ◦ f∗(w))

)

by Proposition 2.7 (c)
= λ ·C̄

(

PullĀ,f (w)
)

. by definition. �

5.8. Lemma. Let f : Ȳ → Y be a proper morphism in SX , of constant relative
dimension, and Z̄ ⊂ Ȳ be closed. Consider two lax push-forwards (Definition 3.5) :

Pushf,Ā : W⋆
Z̄(Ȳ , L̄)→W∗

fZ̄(Y, L) and Pushf,B̄ : W⋆
Z̄(Ȳ , M̄)→W∗

fZ̄(Y,M)

where ⋆ = ∗+dim f for two alignments Ā : L̄ ❀ ωf ⊗ f∗L and B̄ : M̄ ❀ ωf ⊗ f∗M
over Ȳ . Suppose that the line bundles L and M over Y are X-aligned, i.e. [L] = [M ]
in PicX(Y )/2.

(a) For every K-alignment C : L❀
K
M over Y , there exists a K-alignment C̄ :

L̄❀
K
M̄ over Ȳ such that for all w̄ ∈W⋆

Z̄(Ȳ , L̄) and λ ∈W∗(X,K) we have

λ ·
C

(

Pushf,Ā(w̄)
)

= Pushf,B̄
(

λ ·
C̄
w̄) in W∗

fZ̄(Y,M) .

(b) For every K-alignment C̄ : L̄❀
K
M̄ over Ȳ , there exists a K-alignment C :

L❀
K
M over Y such that the very same property holds (read backwards).
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Proof. For (a), use Lemma 1.3 to construct C̄ such that the following left-hand
square commutes :

π∗
Ȳ
K ⊗ L̄

∃ C̄
///o/o/o/o/o/o/o/o

Ā′:=(12)◦(id⊗Ā)
��
�O
�O

M̄

B̄
��
�O
�O

ωf ⊗ π∗
Ȳ
K ⊗ f∗L

f !C
///o/o/o ωf ⊗ f∗M

π∗
Ȳ
K ⊗ L̄

C̄
///o/o/o/o/o/o/o/o

Ā′

��
�O
�O

M̄

B̄
��
�O
�O

ωf ⊗ π∗
Ȳ
K ⊗ f∗L

∃ D̄
///o/o/o ωf ⊗ f∗M

For (b), first solve the above right-hand square to find D̄ and use Corollary 4.5 to
find C : π∗

Y K ⊗ L ❀ M such that D̄ ≃ f !C̄. In both cases we have

(6) B̄ ◦ C̄ ≃ f !C ◦ Ā′ .

Then compute

Pushf,B̄
(

λ ·C̄ w̄) = f∗ ◦ B̄
	 ◦ C̄	(π∗

Ȳ
(λ) · w̄) by definition

= f∗ ◦ (f
!C)	 ◦ Ā′	(π∗

Ȳ
(λ) · w̄) by (6) and Proposition 2.7

= C	 ◦ f∗ ◦ Ā
′	
(

π∗
Ȳ
(λ) · w̄

)

by Corollary 3.2

= C	 ◦ f∗

(

(12)
(

π∗
Ȳ
(λ) · Ā	(w̄)

)

)

by Proposition 2.7 (c)

= C	

(

π∗
Y (λ) · f∗

(

Ā	(w̄)
)

)

by projection formula for f∗

= λ ·C
(

Pushf,Ā(w̄)
)

. by definition.

The permutation of line bundles (12) in the fourth equation is usually dropped but
actually is the precise way to state the projection formula. �

5.9. Remark. Following up on Remark 2.10, it is easy to verify that the lax module
structure is compatible with the localization long exact sequence.

6. Total bases of the total Witt group

We want to define what should be a basis of the non-existent total Witt group
of Y with support in Z, over the similarly evanescent total Witt group of X . The
intuitive meaning is simple. We want every Witt class of W∗(Y, L) to be a sum of
lax-products of elements of the basis by Witt classes over X (the coefficients) and
we want no linear relation among the Witt classes in the basis, with coefficients
over X .

6.1. Setup. We will repeatedly use the following situation : Let L1, . . . , Ln be line
bundles over an X-scheme Y , let j1, . . . , jn be integers and Z ⊂ Y a closed subset.
We consider Witt classes w1, . . . , wn where each wi ∈ Wji

Z (Y, Li) lives in its own
Witt group of Y with support in the common closed subset Z ⊂ Y . We want to
make sense of linear combinations of w1, . . . , wn with coefficients in the Witt groups
of X . With the lax module structure of Section 5, there are many ways to multiply
each wi by a coefficient λi over X . We clarify this first.

6.2. Definition. Let w1, . . . , wn be Witt classes over Y as in 6.1 and assume they
are X-aligned in the sense of Definition 5.1, i.e. [L1] = · · · = [Ln] in PicX(Y )/2.

A set of compatible coefficients for w1 , . . . , wn consists of two ingredients :

• Witt classes λ1 ∈ Wi1(X,K1), . . . , λn ∈ Win(X,Kn) over X , with the
property that i1 + j1 = i2 + j2 = · · · = in + jn; call this number k ∈ Z.

• A Ki-alignment Ci : Li
❀

Ki
L (Definition 5.1), for every i = 1, . . . , n, for a

common line bundle L over Y ; that is, a pair Ci = (Mi, φi) where Mi is a

line bundle on Y and φi : M
⊗2
i ⊗ π∗

Y Ki ⊗ Li
∼
−→ L is an isomorphism.
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When k ∈ Z and the line bundle L over Y are specified in advance, we speak
of (k, L)-compatible coefficients. Naturally, we abbreviate all this by writing that
the “λ1, . . . , λn are compatible coefficients for w1, . . . , wn”. We also use the mildly
abusive notation λiwi for λi ·Ci

wi when there is no risk of confusion, but we
insist that the alignments Ci come with the coefficients λi’s in any case, possibly
implicitly. This lax product λi ·Ci

wi belongs to Wk(Y, L). We then define the lax
linear combination of the w1, . . . , wn with coefficients λ1, . . . , λn as the following
element in Wk

Z(Y, L) :
∑

λiwi :=
∑

λi ·
Ci

wi .

6.3. Definition. Let Z ⊂ Y be closed and let I be a set. A family (wi)i∈I of

Witt classes wi ∈ W
j(i)
Z (Y, Li) is called totally independent over X if for every

finite subset J of I such that the (wi)i∈J are X-aligned and every compatible
coefficients (λi)i∈J , the relation

∑

J λiwi = 0 forces all λi to be zero.

6.4. Remark. In the following definitions, we are going to use a subset P of
PicX(Y )/2. The reader might want to assume at first that P is the whole PicX(Y )/2
for this will often be the case. Allowing other P ’s will only become relevant when
dealing with the functorial behavior of these notions, and only in “fringe cases”. If
[L] ∈ P , we say that L is X-aligned with P and we also say that every Witt class
w ∈W∗

Z(Y, L) is X-aligned with P . These conditions are empty for P = PicX(Y ).

6.5. Definition. Let Z ⊂ Y be closed and P be a subset of PicX(Y )/2. Let
(wi)i∈I be a family of Witt classes over Y with support in Z, which are all X-
aligned with P . We say that (wi)i∈I totally generates the P -part of the Witt groups
of Y with support in Z, over X, if for every line bundle L over Y such that [L] ∈ P ,

every integer k and every y ∈ Wk
Z(Y, L), there exists a finite subset J of I such

that (wi)i∈J are aligned with L, and (k, L)-compatible coefficients (λi)i∈J over X
such that y =

∑

i∈J λiwi as in Definition 6.2.

6.6. Definition. Let P ⊂ PicX(Y )/2 and Z ⊂ Y closed. We say that a family
(wi)i∈I of Witt classes X-aligned with P forms a total basis of the P -part of the
Witt groups of Y with support in Z, over X , if it is totally independent (Defini-
tion 6.3) and totally generates (Definition 6.5).

6.7. Example. For Z = Y = X , the unit 1 ∈W0(X,OX) is a total basis over X .

6.8. Remark. Unlike the classical notion, total independence does not strictly
imply uniqueness of coefficients in a linear combination; given totally independent
classes w1, . . . , wn, all X-aligned with some line bundle L, we could have

∑

λi ·Ci

wi =
∑

λ′
i ·C′

i
wi without λi = λ′

i for all i. Equality only follows from independence

if the alignments Ci and C′
i are the same. However, Lemma 5.5 tells us that if Y

is in SX , we can find an alignment Ai : Ki ❀ K ′
i over X for every i such that

λi ·Ci
wi = λ′′

i ·Ci
wi with λ′′

i = Ai
	(λ′

i). Then, we must have λi = λ′′
i by total

independence.

Anyway, for X-schemes in our class SX (Definition 4.1), we have the following
“classical” interpretation of a total basis :

6.9. Proposition. Let Y ∈ SX . Let P ⊂ PicX(Y )/2 be a subset, Z ⊂ Y closed and

let
(

wi ∈Wji
Z (Y, Li)

)

i∈I
be a set of Witt classes on Y with support in Z, such that

each [Li] ∈ P . For each p ∈ P set Ip =
{

i ∈ I
∣

∣ [Li] = p in PicX(Y )/2
}

. Then the
following properties are equivalent :

(i) The family (wi)i∈I is a total basis of the P -part of the Witt groups of Y
with support in Z, over X (Definition 6.6).
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(ii) For every line bundle L with [L] ∈ P , every k ∈ Z and for every choice, for
those i ∈ I[L], of a line bundle Ki over X and a Ki-alignment Ci : Li

❀

Ki
L,

the following map is an isomorphism

(7)
θ = θ((Ci)i) :

⊕

i∈I[L]

Wk−ji(X,Ki)
∼
−→ Wk

Z(Y, L)

(xi)i∈I[L]
7−→

∑

xi ·Ci
wi .

(iii) For every class p ∈ P and every k ∈ Z, there exists a choice of L ∈ p and
there exists a choice, for each i ∈ Ip, of a line bundle Ki over X and a
Ki-alignment Ci : Li

❀

Ki
L for which (7) is an isomorphism.

Note that θ as in (7) is always a homomorphism of W(X)-modules by Lemma 5.6.

Proof. (i) ⇒ (ii) : Injectivity is straightforward from total independence (Defi-

nition 6.3). For surjectivity, let y ∈ Wk
Z(Y, L) and use total generation (Defini-

tion 6.5) to write y as
∑

i∈J λi ·Ci
wi for some finite subset J ⊂ I, some coeffi-

cients λi ∈ Wk−ji(X, Ji) and some Ji-alignments Di : Li
❀

Ji
L, for i ∈ J . A priori,

Ji might differ from Ki and Di might differ from Ci. But Lemma 5.5 tells us that
each λi ·Di

wi = xi ·Ci
wi for a suitable xi ∈ W∗(X,Ki) lax-similar to λi . Hence

y =
∑

i∈J xi ·Ci
wi ∈ im(θ). So, θ is surjective.

(ii)⇒ (iii) : Do choose L ∈ p and X-alignments Ci : Li
❀

Ki
L for i ∈ Ip.

(iii)⇒ (i) : Total generation is immediate from surjectivity of θ and Lemma 5.5.
For total independence, let (wi)i∈J be X-aligned (as in 6.1) and let (λi)i∈J be
(L′, k)-compatible coefficients for some L′, such that

∑

i∈J λi ·Di
wi = 0 for suitable

alignments Di. Note that [L′] ∈ P . Choose L, Ki and Ci as in (iii) for p = [L′].
Choose also A : L′

❀ L. Then A	
(
∑

i∈J λi ·Di
wi

)

= 0 as well. By Lemmas 5.4

and 5.5 again, each A	(λi ·Di
wi) = xi ·Ci

wi for some xi lax-similar to λi. We then
get θ((xi)i∈J ) = 0 which forces all xi = 0 by injectivity of θ. But then λi = 0 as
well since alignment isomorphisms are... isomorphisms. �

6.10.Lemma. Let P and P ′ be subsets of PicX(Y )/2 and let (wi)i∈I (resp. (wi)i∈I′)
be a totally generating family of the P -part (resp. the P ′-part) of the Witt groups
of Y with support in Z, over X. Then the union family (wi)i∈I∪I′ is a totally
generating family of the P ∪ P ′-part of the Witt groups of Y over X. If P and P ′

are disjoint and if the families (wi)i∈I and (wi)i∈I′ are both totally independent,
then their union is totally independent.

Proof. Clear. �

6.11. Remark. Given i ≡ j modulo 4, there is a canonical isomorphism Wi ∼
→Wj ,

given by (Σ2)
j−i
4 , which involves no choice and no sign. Moreover, this isomorphism

commutes with every pull-back, push-forward, alignment isomorphism and products
(still no sign because j−i

2 is even). In other words, a Witt class w ∈Wi corresponds

to a unique Witt class of Wj .
If one has an X-scheme Y and a family of Witt classes on Y , one can wonder

whether the notions of total independence and total generation (Definitions 6.3

and 6.5) would be different if one identified every Witt class w ∈Wi with its image

in Wj , for j ≡ i modulo 4. The answer is no, as long as one does the same on X .
Indeed, Σ2

(

λ ·A w
)

=
(

Σ2(λ)
)

·A w. Hence every occurrence of Σ2 on Y can be
“absorbed” in the coefficients.

The following analogy might help the puzzled reader. If R = ⊕i∈ZR
i is a Z-

graded ring and M = ⊕i∈ZM
i is a graded R-module (or R-algebra), and if there

exists s ∈ R4 invertible and central (nothing special about 4, of course), then one
can consider the Z/4-graded ring R̄ = ⊕[i]∈Z/4R

i with 0 ≤ i ≤ 3 and the graded
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R̄-module M̄ = ⊕[i]∈Z/4M
i with 0 ≤ i ≤ 3, where a product taking values outside

of the range 0 ≤ i ≤ 3 is brought back in that range by using the unique power of
s which does the job. The point is that a collectionM⊂ ∪i∈ZM

i of homogeneous
elements in M form an R-basis of M if and only if the very same collection forms
an R̄-basis of M̄ (once brought back in the range 0 ≤ i ≤ 3). In particular M̄ has
the same dimension over R̄ as M had over R. The only possible confusion would
come from the perverse contemplation of M̄ as an R-module.

Let us now examine how these notions behave under pull-backs or push-forwards.
The assumption about injectivity of f∗

|P
below is the very reason we allow the

flexibility of those subsets P ⊂ PicX(Y ), see Remark 6.17.

6.12. Proposition. Let f : Ȳ → Y be a morphism of schemes in SX . Let P
be a subset of PicX(Y )/2 and Z ⊂ Y closed. Suppose that the pull-back map
f∗|P : P → PicX(Ȳ )/2 is injective, as a map of sets. Suppose also that the pull-

back f∗ : Wk
Z(Y, L) → Wk

f−1(Z)(Ȳ , f∗L) is an isomorphism for all L with [L] ∈ P
and all k ∈ Z.

Let (wi)i∈I be a set of Witt classes wi ∈ Wji
Z (Y, Li) over Y with support in Z,

with all [Li] ∈ P . Choose for every i an alignment Āi : f
∗Li ❀ L̄i over Ȳ , hence

a lax pull-back PullĀi,f : Wji
Z (Y, Li)→Wji

f−1(Z)(Ȳ , L̄i). Let w̄i := PullĀi,f (wi).

Then (wi)i∈I is a total basis of the P -part of the Witt group of Y with support
in Z, over X, if and only if (w̄i)i∈I is a total basis of the f∗P -part of the Witt
group of Ȳ with support in f−1Z, over X.

Proof. We simply use Proposition 6.9, and its notation, both for Y and for Ȳ , in the
following commutative diagram (for line bundles and alignments to be specified) :

(8)

Wk−ji(X,Ki)
θ

// Wk
Z(Y, L)

PullB̄,f≃

��

Wk−ji(X,Ki)
θ̄

// Wk
f−1Z(Ȳ , L̄)

⊕

i∈I[L]

⊕

i∈I[L̄]

Let k ∈ Z. Given a line bundle L on Y , we can set L̄ = f∗L and B̄ = id.
Conversely, given L̄ on Ȳ with [L̄] ∈ f∗(P ) ⊂ PicX(Y )/2, Lemma 4.3 (d) provides
an L over Y with [L] ∈ P such that f∗[L] = [L̄] in Pic(Ȳ )/2 already. The latter
allows us to choose B̄ : f∗L ❀ L̄ a (plain) alignment over Ȳ , hence to use the lax
pull-back PullB̄,f as on the right-hand side of (8).

Of course, every w̄i is X-aligned with f∗P . Furthermore, our assumption about
the Picard-group f∗ being injective on P implies that wi is X-aligned with L if
and only if w̄i is X-aligned with L̄ (use part (c) of 4.3), thus f∗ : I[L]

∼
→ I[L̄] is a

bijection and the left hand side of (8) also makes sense.
Now choose for every i ∈ I[L] a Ki-alignment Ci : Li

❀

Ki
L, so that we can create

θ : (xi) 7→
∑

i∈I xi ·Ci
wi in (8) as we did in (7). By Lemma 5.7 (a), there exists

Ki-alignments C̄i : f
∗Li

❀

Ki
L̄ over Ȳ such that

PullB̄,f (x ·
Ci

wi) = x ·
C̄i

PullĀi,f (wi)

for all x ∈W∗(X,Ki) and all i ∈ I[L]. So we can define θ̄ by (xi) 7→
∑

xi ·C̄i
w̄i, to

make (8) commutative. Consequently, θ and θ̄ are simultaneously isomorphisms.
By Proposition 6.9, (wi)i∈I and (w̄i)i∈I are simultaneously bases. �

6.13. Corollary. Hypotheses of Proposition 6.12 hold when f : Ȳ → Y is an affine
bundle. So, in that case, a family is a total basis over X of the P -part of the Witt



BASES OF TOTAL WITT GROUPS AND LAX-SIMILITUDE 17

groups of Y with support in Z, if and only if, it is pulled-back to a total basis over X
of the f∗(P )-part of the Witt groups of Ȳ with support in f−1Z. �

6.14. Corollary. For Y ∈ SX , the notions of total independence, total generation,
and total basis are stable under alignment isomorphisms (Definition 2.3). For in-
stance, if (wi)i∈I is a total basis of the P -part of the Witt group of Y with support
in Z, over X, the family (Ai

	(wi))i∈I is still such a basis for any family of align-
ment isomorphisms (Ai

	)i∈I (e.g. multiplications by a unit of Y , see Example 2.4).

Proof. Apply Proposition 6.12 to f = idY . �

6.15. Proposition. Let f be a proper morphism of schemes in SX with constant
relative dimension d. Let P be a subset of PicX(Y )/2 and Z̄ ⊂ Ȳ . Let f !P :=
[ωf ] · f

∗P ⊆ PicX(Ȳ )/2. Suppose the function f∗
|P : P → PicX(Ȳ )/2 injective.

Suppose also that for any line bundle L such that [L] ∈ P , the push-forward map

f∗ : Wk+d
Z̄

(Ȳ , ωf ⊗ f∗L)→Wk
fZ̄(Y, L) is an isomorphism for all k ∈ Z.

Then a family (w̄i)i∈I of Witt classes on Ȳ with support in Z̄, X-aligned with f !P,
is a total basis of the f !P -part of the Witt group of Ȳ with support in Z̄ if and only
if the image family

(

Pushf,Āi
(w̄i)

)

i∈I
under any family of lax push-forwards cor-

responding to alignments (Āi)i∈I is a total basis of the P -part of the Witt group
of Y with support in f(Z).

Proof. The proof is similar to that of Proposition 6.12, mutatis mutandis. One
compares two θ homomorphisms that are “arranged” via Lemma 5.8 this time. �

In particular, the dévissage isomorphism for Witt groups yields the following.

6.16. Corollary. Let ι : Z →֒ Y be a closed immersion of constant codimension,
with Z and Y in SX . Let P be a subset of PicX(Y )/2 such that the map of sets
ι∗|P : P → PicX(Z)/2 is injective. Let ι!P = [ωι] · ι

∗P ⊆ PicX(Z)/2. Let (wi)i∈I

be elements of the P -part of the total Witt groups of Y with support in Z, and for
each i ∈ I, let vi be a Witt class in the ι!P -part of the Witt groups of Z over X
such that wi = ι∗(vi) (this is always possible by dévissage). The family (vi)i∈I is a
total basis of the ι!P -part of the Witt groups of Z, over X, if and only if the family
(wi)i∈I is a total basis of the P -part of the Witt groups of Y with support in Z,
over X.

6.17. Remark. The injectivity condition on f∗ : P → PicX(Ȳ )/2 is not really
harmful because one can always split PicX(Y )/2 in smaller P -chunks to ensure
that the condition holds for each of them, and then use Lemma 6.10 to obtain a
total basis for the whole P = PicX(Y )/2. This happens in “fringe” cases, in the
cellular decomposition of the Grassmannians, for instance, see [3].

7. Total bases in the localization long exact sequence

Let U be the open complement of a closed subset Z ⊂ Y , and let υ : U →֒ Y
be the corresponding open embedding. Assume both Y and U are in SX . Let
e : W∗

Z(Y, L) → W∗(Y, L) be the extension of support map. Recall that in this
situation, there is a long exact sequence of localization

· · · −→Wi
Z(Y, L)

e
−→Wi(Y, L)

υ∗

−→Wi(U, υ∗L)
∂
−→Wi+1

Z (Y, L)→ · · ·

7.1. Theorem. Let P be a subset of PicX(Y )/2. Assume that the restriction υ∗
|P :

P → PicX(U)/2 is injective and let PU = υ∗(P ) ⊂ PicX(U)/2.
Let I, J and K be sets and let (w′

i)i∈I and (wj)j∈J be elements in Witt groups
of Y , let (vi)i∈I and (v′k)k∈K be elements in Witt groups of Y with support in Z
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and let (uk)k∈K and (u′
j)j∈J be elements in Witt groups of U , whose line bundles

are restricted from Y . (Recall lax-similitude ! from Definition 2.5.) Suppose the
following conditions hold (see Figure 1) :

(a) for every i ∈ I, we have e(vi) ! w′
i

(b) for every j ∈ J , we have υ∗(wj) ! u′
j

(c) for every k ∈ K, we have ∂(uk) ! v′k.

Then, the following properties are satisfied :

(1) for every i ∈ I, we have υ∗(w′
i) = 0;

(2) for every j ∈ J , we have ∂(u′
j) = 0;

(3) for every k ∈ K, we have e(v′k) = 0.
(4) If, furthermore, out of the three following statements:

(i) the (vi)i∈I and (v′k)k∈K form a total basis of the P -part of the Witt
groups of Y with support in Z, over X,

(ii) the (w′
i)i∈I and (wj)j∈J form a total basis of the P -part of the Witt

groups of Y , over X,
(iii) the (uk)k∈K and (u′

j)j∈J form a total basis of the PU -part of the
Witt groups of U , over X,

two are true, then the remaining one is also true.

vi w′
i uk

v′k wj u′
j

e

υ∗

∂

P -part
of WZ(Y )

P -part
of W(Y )

PU -part
of W(U)

Figure 1. Families mapping to each other up to lax-similitude in
Theorem 7.1. No arrow means mapped to zero.

Proof. Parts (1)–(3) follow immediately from Remark 2.10. The proof of (4) goes
through as for classical modules over a ring. Choose a class p ∈ P over Y , which
by hypothesis is the same thing as choosing its image f∗(p) ∈ f∗P , i.e. a class
in f∗P over U . Up to replacing the u′

j, v′k and w′
i up to lax-similitude, which

does not change their total-basis qualities by Corollary 6.14, we can assume that
relations (a)–(c) are equalities. Now, choosing X-alignments as in Proposition 6.9
for those uk, u

′
j, vi, v

′
k, wj and w′

i which are X-aligned with L, one can define
three homomorphisms θ as in that proposition. One can construct a split exact
sequence at the level of Witt groups of X , and compare it with the localization
long exact sequence for Y and L via the various θ. This is a morphism of long
exact sequences by the compatibilities of the lax product structure with extension
of support, restriction to an open and connecting homomorphism, see Remark 5.9.
The Five Lemma then gives the result. We leave the details to the reader. �

7.2. Remark. The same theorem holds with support, i.e. replacing W(Y ) by
WZ′(Y ), and consequently WZ(Y ) by WZ∩Z′(Y ) and W(U) by WZ′∩U (U).
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7.3. Remark. The benefit of this theorem, together with the one on dévissage, is
that we can build a total basis on Y out of smaller ones on Y with support in Z
and on U . As in Remark 6.17 and for the same reasons, the injectivity assumption
on P → PicX(U)/2 is not really restrictive in actual computations.

7.4. Remark. All this “total” formalism still holds in the non-necessarily regular
case with the following modifications. All schemes should be noetherian and sepa-
rated. The category SX should be replaced by the category of X-schemes Y that
have a dualizing complex (not necessarily injectively bounded), with the conditions
on Picard groups left unchanged : the important point is that two dualizing com-
plexes always differ by tensoring by a line bundle (and a shift). The Witt groups
considered for such schemes Y should be the coherent Witt groups, and the for-
malism will mimic how they behave as a (total) module over the locally free Witt
groups of X . In particular, the X-alignment of definition 5.1 should be replaced by
an isomorphism φ : M⊗2 ⊗ π∗

Y N ⊗K ′ ∼
→ K where M and N are line bundles, as

before, but K and K ′ are dualizing complexes. Pull-backs of coherent Witt groups
should only be considered along flat morphisms preserving dualizing complexes (e.g.
open embeddings in the localization sequence). Morphisms involving pull-backs of
locally free Witt groups can be considered without restriction (e.g. pull-backs from
the base X).
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URL: http://www.math.uni-bielefeld.de/~bcalmes

http://arxiv.org/abs/0807.3296

	Introduction
	1. The category of quadratic alignments
	2. Alignment isomorphisms on Witt groups
	3. Lax pull-back and lax push-forward
	4. Descending alignments
	5. Relative alignments and lax module structure
	6. Total bases of the total Witt group
	7. Total bases in the localization long exact sequence
	References

