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WITT GROUPS OF GRASSMANN VARIETIES

PAUL BALMER AND BAPTISTE CALMÈS

Abstract

We compute the Witt groups of split Grassmann varieties, over any
regular base X. The answer is that the total Witt group of the Grass-
mannian is a free module over the total Witt ring of X. We provide an
explicit basis for this free module, which is indexed by a special class of
Young diagrams, that we call even Young diagrams.
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Introduction

At first glance, it might be surprising for the non-specialist that more than

thirty years after the definition of the Witt group of a scheme, by Kneb-

usch [14], the Witt group of such a well-known variety as a Grassmannian has

not been computed yet. This is especially striking since analogous results for

ordinary cohomologies, for K-theory and for Chow groups, have been settled

for even longer. The goal of this article is to solve this problem and explain

what made it so hard in the first place.

Main Theorem (see Theorem 6.1). Let X be a regular Noetherian and

separated scheme over Z[ 12 ], of finite Krull dimension. Let 0 < d < n be
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integers and let GrX(d, n) be the Grassmannian of d-dimensional subbundles

of the trivial n-dimensional vector bundle V = On
X over X. (More generally,

we treat any vector bundle V admitting a complete flag of subbundles.)

Then the total Witt group of GrX(d, n) is a free graded module over the

total Witt group of X with an explicit basis indexed by so-called “even” Young

diagrams. The basis element corresponding to an even Young diagram is es-

sentially the push-forward of the unit along the inclusion of the corresponding

Schubert variety. The cardinal of this basis equals 2 · (d
′ + e′)!
d′! · e′! where d′ =

[d
2

]
and e′ =

[n− d
2

]
.

Before explaining the statement in more detail, recall that the Grothendieck

group, or the Chow group, of GrX(d, n) would also be free over that of X but

with a basis indexed by all Young diagrams. We shall explain below why only

some Young diagrams “make it to the Witt group”.

The total Witt group refers to the sum of the Witt groups Wi(X,L),

Wtot(X) =
⊕

i∈Z/4,
[L]∈Pic(X)/2

Wi(X,L)

for all possible shifts i ∈ Z/4 and all possible twists [L] ∈ Pic(X)/2 in the

duality. Details about this total Witt group, including the dependency on

choosing L in its class [L] ∈ Pic(X)/2, can be found in Section 3. For this

introduction, let us keep things simple: The total Witt group of X wraps up

all Witt groups of X, for all possible shifts i and all twists L.

For X = Spec(F ), the spectrum of a field, the total Witt group boils

down to the classical Witt group W(F ) but even in that case the above

Theorem is new and the total Witt group of GrF (d, n) involves non-trivial

shifted and twisted Witt groups. The result has a very round form when

stated for total Witt groups, but Knebusch’s classical unshifted Witt groups

W0(GrX(d, n), L) can be isolated, as well as the unshifted and untwisted

Witt group W(GrX(d, n)) = W0(GrX(d, n),O). Indeed, the announced basis

consists of homogeneous elements and we describe below how to read their

explicit shifts i and twists L directly on the corresponding Young diagram.

For instance, it is worth noting that there are no new interesting antisymmet-

ric forms in the Witt groups of GrX(d, n), that is, except for those extended

from X; see Corollary 7.2.

To describe our basis explicitly, we need to introduce even Young diagrams.

We first consider ordinary Young diagrams sitting in the upper left corner of a

rectangle with d rows and e columns, which we call the frame of the diagram;

see Figure 1.
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d

e

Λ

Figure 1. Young diagram Λ in (d× e)-frame

We say that such a framed Young diagram Λ is even if all the segments

of the boundary of Λ which are strictly inside the frame have even length.

That is, we allow Λ to have odd-length segments on its boundary only where

it touches the outside frame; see Figure 2 for examples. (In Figures 14, 15

and 16 we further give all even diagram in (d×e)-frame for (d, e) = (4, 4),

(4, 5) and (5, 5), respectively.)

4

22

2

2

2

24
2

2
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Figure 2. Five examples of even Young diagrams

We shall see that basis elements of Wtot
(
GrX(d, n)

)
are in bijective corre-

spondence with even Young diagrams in (d×e)-frame, for e := n−d. Moreover,

as explained in Section 4, the Witt class φd,e(Λ) corresponding to such a dia-

gram Λ lives in the Witt group Wi
(
GrX(d, n), L

)
for the shift i = |Λ| ∈ Z/4

equal to the area of the diagram and for the twist [L] ∈ Pic(GrX(d, n))/2

equal to the class of t(Λ) ·Δ where Δ is the determinant of the tautological

bundle and where the integer t(Λ) is half the perimeter of the diagram Λ

(see Figure 9 in Section 4). More generally, when V is not free but admits

a complete flag of subbundles, the twist of φd,e(Λ) also involves a multiple

of the determinant of V , in the direct summand of Pic(GrX(d, n))/2 coming

from Pic(X)/2.
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Let us put our result in perspective. In its modern form, see for in-

stance Laksov [15], the computation of the cohomology (or K-theory, or Chow

groups) of a cellular variety uses essentially only localization long exact se-

quences and homotopy invariance, applied to the classical cellular decom-

position of the Grassmannian. It took some time for Witt groups to reach

the necessary cohomological maturity. Indeed, the localization long exact se-

quence could only be established by defining first “higher” or “shifted” Witt

groups, as was done in [3] and [4] by the first author, using the framework of

triangulated categories. Then, homotopy invariance was proved by Gille [11].

To be more precise, one actually also needs some form of dévissage, that al-

lows us to compare the theory with supports on a closed subset Z with the

theory of Z itself. This piece of theory was a hard nut to crack because dual-

ities came in the way, but they are now well understood. (We return to these

dualities below.)

This construction of the cohomological machines accounts for most of the

delay that Witt groups accumulated in comparison to sister theories. However,

this is not the end of the story. What makes the computation of the Witt

groups of GrX(d, n) harder than that of classical theories is the following very

interesting phenomenon. The classical computation proceeds by induction,

using the closed embedding of a smaller Grassmannian GrX(d, n − 1) inside

GrX(d, n), whose open complement U = GrX(d, n) � GrX(d, n − 1) is an

affine bundle over another smaller Grassmannian, GrX(d − 1, n). (See more

in Section 5.) Now the true miracle in the classical proof is that the restriction

homomorphism, from the big Grassmannian GrX(d, n) to the open U , is split

surjective. This holds more precisely for any oriented cohomology theory in

the sense of Levine-Morel [16] or Panin [18]. In other words, there are no

real localization long exact sequences involved in the classical proof, no real

connecting homomorphisms, just split short exact sequences.

The interesting point is that this miracle ceases to happen for Witt groups :

For a general (i, [L]) ∈ Z/4×Pic(GrX(d, n))/2, the restriction homomorphism

Wi(GrX(d, n), L) −→ Wi(U,L)

does not admit a section. Worse, it is not even surjective ! That is, the con-

necting homomorphism in the localization long exact sequence is not zero in

general. This makes the Witt group computation not a mere technical adap-

tation of the classical methods but a completely different story : One needs to

compute a connecting homomorphism in geometric enough terms, in order to

follow what happens on the given varieties. This very last pocket of Witt re-

sistance has been cleared in the companion article [6] and Grassmannians are

the first known examples where this phenomenon can be described explicitly.
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Let us now comment on the organization of the paper. Sections 1 and 2

contain preparatory material on Grassmann varieties, desingularizations of

Schubert varieties and even Young diagrams.

Section 3 formalizes the use of total Witt groups, since the group W∗(X,L)

does not truly depend only on the class [L] ∈ Pic(X)/2 but really on the

representative L in this class. This is an old problem, rooting back to Kneb-

usch [14], to which we proposed a solution in [7]. We recall this formalism

in Section 3 with emphasis on the case of Grassmannians. Until then, this

Introduction should therefore be read cum grano salis.

Our generators of Wtot
(
GrX(d, n)

)
are defined in Section 4 as push-

forwards of the unit forms of certain desingularized Schubert varieties. The

reader should observe that pushing the unit form is not always possible, due

to the presence of line bundles in the definition of the push-forward. Indeed,

for a proper morphism f : Ȳ → Y of constant relative dimension dim(f), be-

tween regular Noetherian schemes Ȳ and Y (think dim f = dim Ȳ − dimY ),

the push-forward along f is defined between the following Witt groups :

(1) Wi+dim f (Ȳ , ωf ⊗ f∗L)
f∗−→ Wi(Y, L) ,

where the special line bundle ωf on the left is the relative line bundle. So,

if unfortunately OȲ is not (up to squares) of the form ωf ⊗ f∗L for any

line bundle L over Y , then one simply cannot push-forward the unit form

of Ȳ , which lives in W0(Ȳ ,OȲ ). This is why we start Section 4 by discussing

the “parity” of the relevant canonical bundles ωf . Although somewhat heavy,

these computations are elementary and are all based on a repeated application

of the computation of the relative canonical bundle of a Grassmann bundle

(Proposition 1.5). The condition for a Young diagram to be even implies the

existence of such a push-forward for the unit of the desingularized Schubert

cell into the Grassmannian. Actually, we could push-forward the unit form

for more Schubert cells but these additional generators would be redundant.

The even Young diagrams are chosen so that the corresponding forms are also

linearly independent.

Then, in Section 5, we recall the classical relative cellular structure of the

Grassmann varieties. In Section 6, we compute how our candidate-generators

behave under the morphisms in the long exact sequence, especially under the

connecting homomorphism, which is most of the time not zero (Corollary 7.3).

The proof of the main theorem (Theorem 6.1) then follows by induction on

the rank of the vector bundle V . The last section contains corollaries and

examples.

This article is written in the language of “functors of points”, which means

that we describe schemes in terms of their points (which are here flags) and
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morphisms of schemes as how they act on those points. This method is com-

pletely rigorous in this case. The original source is [1] and we also refer the

reader to [9, § I.1] and [13, Part 2] for general considerations on this sub-

ject. This language is customary when dealing with flag varieties; see for

instance [15] in which it is used for the computation of Chow groups of Grass-

mann varieties.

1. Combinatorics of Grassmann and flag varieties

We recall elementary facts about Grassmann varieties and desingulariza-

tions of Schubert cells. We also provide the necessary material about canon-

ical bundles to treat the push-forward homomorphisms for Witt groups in

Section 4.

1.1. Definition. A subbundle P�V of a vector bundle V over a scheme X

is an OX -submodule which is locally a direct summand, i.e. P and V/P are

vector bundles.

1.2. Definition. Let V be a vector bundle of rank n > 0 over a scheme X

and let d be an integer 0 � d � n. We denote by GrX(d,V) the Grassmann

bundle over X parameterizing the subbundles of rank d of V . In the language

of functors of points, it means that for any morphism f : Spec(R) → X, the

set GrX(d,V)(R) consists of the R-submodules P � V(R) = f∗(V) which are

direct summands of rank d.

The scheme GrX(d,V) comes equipped with a smooth structural morphism

π : GrX(d,V) → X and a tautological bundle Td = T GrX(d,V)
d of rank d.

1.3. Proposition. The scheme GrX(d,V) is smooth over X of relative

dimension d(n−d). For 0 < d < n, the Picard group of GrX(d,V) is given by

Pic(X)⊕ Z ∼= Pic(GrX(d,V))
(�,m) �→ π∗(�) · [det(Td)]m.

In case d = 0 or d = n, the morphism π : GrX(d,V) → X is the identity.

Proof. The Picard group of a regular scheme coincides with its Chow group

CH1, which is computed in [15] for Grassmannians; see Theorem 16 for the

case where X is a field, and §13 to work over a regular base X. Using

the Plücker embedding, one checks that the generator in loc. cit. is indeed

[det(Td)]. �
Let Δd denote the class of det(Td) in Pic

(
GrX(d,V)

)
/2.

1.4. Corollary. If 0 < d < n, we have a natural identification

Pic
(
GrX(d,V)

)
/2 ∼= Pic(X)/2 ⊕ Z/2 ·Δd.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

WITT GROUPS OF GRASSMANN VARIETIES 607

1.5. Proposition. The class of the relative canonical bundle ωGrX(d,V)/X

of the projection π : GrX(d,V) → X is [ωGrX (d,V)/X ] = [detV ]−d · Δn
d in

Pic(GrX(d,V)). In particular, if V = On
X is trivial, [ωGrX(d,V)/X ] = Δn

d .

Proof. The morphism π is smooth, so ωGrX(d,V)/X is the determinant (high-

est exterior power) of the relative cotangent bundle of π. This cotangent

bundle is the tautological bundle tensored by the dual of the tautological

quotient bundle (see [10, Appendix B.5.8]). Taking the determinant, we get

the result. �

We now extend the previous results from Grassmannians to some flag va-

rieties.

1.6. Definition. Let k � 1 and (d, e) be a pair of k-tuples of non-negative

integers d = (d1, . . . , dk) and e = (e1, . . . , ek) satisfying

(2) 0 < d1 < · · · < dk and e1 + d1 � · · · � ek + dk .

(The second condition holds, in particular, if we have e1 � · · · � ek.) Consider

a flag

(3) Vd1+e1 � · · ·� Vdi+ei � · · ·� Vdk+ek

of vector bundles over X, where � indicates subbundles in the strong sense

of Definition 1.1 and where the rank is given by the index: rkX(Vr) = r.

We associate to this data the scheme F lX(d, e,V•) over X, which parame-

terizes the flags of vector bundles Pd1
�Pd2

� · · ·�Pdk
such that rkPdj

= dj
and Pdj

� Vdj+ej . As a functor of points, this gives for any morphism

f : Y → X,

(4)

F lX(d, e,V•)(Y ) :=

⎧⎨
⎩

0 � Pd1�

e1

� Pd2�

e2

� · · · � Pdk�

ek

0 � f∗Vd1+e1 � f∗Vd2+e2 � · · · � f∗Vdk+ek

⎫⎬
⎭ ,

where all Pdi
are vector bundles over Y of rank di such that all inclusions

are subbundles in the sense of Definition 1.1. The integers along inclusions

indicate codimensions. Following general practice, we shall drop the men-

tion of f∗ in the sequel. Moreover, to avoid cumbersome notation, unless

the original flag (3) varies, we drop the mention of V• from the notation :

F lX(d, e) = F lX(d, e,V•).

1.7. Example. For k = 1, the scheme F lX(d, e) is simply GrX(d1,Vd1+e1).

1.8. Remark. For any choice J of k′ indices among {1, . . . , k}, one can

consider the pair of k′-tuples (d′, e′) obtained from (d, e) by keeping di and ei
only for indices i ∈ J . There is a natural morphism F lX(d, e) → F lX(d′, e′)

over X, obtained by dropping the Pdj
for those indices j which are not in the

chosen J .
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Furthermore, for any vector bundle V such that Vdk+ek � V , there is a

natural morphism fd,e,V of schemes over X as follows :

(5)
fd,e,V : F lX(d, e) −→ GrX(d,Vdk+ek) ↪→ GrX(d,V)

(Pd1
, . . . ,Pdk

) �−→ Pdk
�−→ Pdk

,

where the first morphism is as above and the second is a closed immersion.

1.9. Definition. The scheme F lX(d, e) is equipped with tautological bun-

dles Tdi
, 1 � i � k, of rank di, whose determinant classes are denoted by

Δdi
:= det(Tdi

). The stalk of Tdi
at a point (Pd1

, . . . ,Pdk
) is Pdi

. In ambigu-

ous cases, the full notation for Tdi
would be T FlX(d,e,V•)

di
.

1.10. Remark. If ei = 0, then the vector bundles Tdi
= Vdi

and Δdi
=

[detVdi
] are both extended from X.

1.11. Lemma. Let k � 2 and let (d, e) be a pair of k-tuples satisfying (2).

Let V• be a flag as in (3). Define the (k − 1)-tuples d|k−1
and e|k−1

as the

restrictions of d and e to the first k − 1 entries. Consider the scheme

Y := F lX( d|k−1
, e|k−1

, V• ) ,

which only “uses” the first k− 1 bundles Vd1+e1 � · · ·�Vdk−1+ek−1
. Consider

the pull-back to Y of the remaining bundle, still denoted Vdk+ek . Observe that

T Y
dk−1

� Vdk+ek and consider the quotient bundle

Ṽ := Vdk+ek/T Y
dk−1

over Y . It has rank dk − dk−1 + ek. We then have a canonical isomorphism

of schemes over Y (hence over X) :

(6) F lX(d, e,V•) ∼= GrY
(
dk − dk−1, Ṽ

)
.

Under this identification, we have T Fl(d,e,V•)
di

= T Y
di

for all 1 � i � k − 1 and

(7) T FlX(d,e,V•)
dk

/T FlX(d,e,V•)
dk−1

= T GrY (dk−dk−1,Ṽ)
dk−dk−1

.

Proof. This simply amounts to the bijective correspondence between a flag

Pd1
� · · · � Pdk−1

� Pdk
satisfying Pdi

� Vdi+ei for all 1 � i � k and the

following data :

(a) the beginning of this flag Pd1
� · · ·�Pdk−1

satisfying Pdi
�Vdi+ei for

all 1 � i � k − 1,

(b) the bundle Pdk
such that Pdk−1

� Pdk
� Vdk+ek ,

and to observe that (b) is equivalent to a subbundle P̃�Vdk+ek/Pdk−1
of rank

dk − dk−1, where P̃ := Pdk
/Pdk−1

. Details are left to the reader. �
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1.12. Convention. When using k-tuples d = (d1, . . . , dk), it will unify

several formulas to simply define d0 = 0.

1.13. Proposition. Let d and e be two k-tuples as in (2) and V• be

a flag as in (3). Then F lX(d, e) is smooth over X of relative dimension∑k
i=1(di−di−1) ei. The Picard group of F lX(d, e) is generated by Pic(X) and

the “new” classes Δdi
:

(8) Pic(F lX(d, e)) ∼= Pic(X) ⊕
⊕

1�i�k,
s.t. ei �=0

ZΔdi
.

The class of the relative canonical bundle ωFlX(d,e)/X is given by the formula

(9)

[ωFlX(d,e)/X ] =
k∏

i=1

[detVdi+ei ]
−di+di−1 ·

k−1∏
i=1

Δ
di−di−1+ei−ei+1

di
· Δdk−dk−1+ek

dk
,

where Δdi
= [detVdi

] if ei = 0 by Remark 1.10 and where we use Conven-

tion 1.12. In particular, for k = 1, we have [ωFlX(d,e)/X ] = [detVd1+e1 ]
−d1 ·

Δd1+e1
d1

.

Proof. By induction on k. The case k = 1 is that of a Grassmannian overX

(Example 1.7) so the result follows from Propositions 1.3 and 1.5.

Let now k � 2. Consider Y = F lX(d|k−1, e|k−1,V•) and the bundle Ṽ =

Vdk+ek/Tdk−1
over Y , as in Lemma 1.11. Recall that rkY (Ṽ) = dk−dk−1+ek,

which is always strictly positive (dk > dk−1) and which is bigger than or

equal to dk − dk−1 with equality if and only if ek = 0. Equation (6) and

Propositions 1.3 and 1.5 immediately give smoothness, the formula for the

relative dimension and that for the Picard group (8). Finally, to prove (9),

observe that

[ωFlX(d,e)/Y ] = [ωGrY (dk−dk−1,Ṽ) / Y ]

= [det Ṽ ]−dk+dk−1 ·
(
Δ

GrY (dk−dk−1,Ṽ)
dk−dk−1

)rk(Ṽ)

= [det Ṽ ]−dk+dk−1 ·
(
Δ

FlX(d,e)
dk

)rk(Ṽ)

·
(
Δ

FlX(d,e)
dk−1

)− rk(Ṽ)

= [detVdk+ek ]
−dk+dk−1 · Δ−ek

dk−1
· Δdk−dk−1+ek

dk
.

The first equality uses (6), the second comes from Proposition 1.5 and the

third from (7). The last equality is a direct computation (in which we drop

the mention of F lX(d, e) for readability). By induction hypothesis, we get

[ωY/X ] from Equation (9) for k − 1, that is, for the flag variety Y . Since

[ωFlX(d,e)/X ] = [ωFlX(d,e)/Y ] · [ωY/X ] over F lX(d, e), we get (9) for k by

adding the above. �
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1.14. Corollary. Let d and e be two k-tuples as in (2) and V• be a flag

as in (3). Let V be a vector bundle of rank d + e such that Vdk+ek � V .

The class in Pic(F lX(d, e)) of the relative canonical bundle for the morphism

fd,e,V : F lX(d, e) → GrX(d,V) of (5) is given by

(10)
[ωFlX(d,e)/GrX(d,V)] =

k∏
i=1

[detVdi+ei ]
−di+di−1 · [detV ]dk ·

·
k−1∏
i=1

Δ
di−di−1+ei−ei+1

di
· Δ−dk−1+ek−e

dk
,

where Δdi
= [detVdi

] if ei = 0 by Remark 1.10 and where we use Conven-

tion 1.12. For k = 1, this reads [ωFlX(d,e)/GrX(d,V)] = [det(V/Vd1+e1)]
d1 ·

Δe1−e
d1

.

Proof. Subtract (fd,e,V )
∗ [ωGrX(d,V)/X ] = [detV ]−dk · Δdk+e

dk
(Proposition

1.5) from the bundle [ωFlX(d,e)/X ] given in (9). �
1.15. Remark. When V• = O•

X , all the formulas are simpler, since all the

[detVi] are trivial. This applies in particular when X = Spec(R) for a local

ring R.

2. Even Young diagrams

We introduce even Young diagrams that will parameterize the basis of the

total Witt group of the Grassmann variety, to be constructed in Section 4.

2.1. Definition. Let d, e � 1. We shall call Young diagram in (d×e)-

frame, or simply (d, e)-diagram, any d-tuple Λ = (Λ1,Λ2, . . . ,Λd) of integers

such that:

e � Λ1 � Λ2 � . . . � Λd � 0.

See Figure 1 in the Introduction. The area of Λ is |Λ| = Λ1 + Λ2 + . . .+ Λd.

These (d, e)-diagrams are just ordinary Young diagrams displayed in the upper

left corner of a rectangle with d rows and e columns, possibly leaving empty

rows below and empty columns to the right of the Young diagram. So, an

ordinary Young diagram with ρ rows and γ columns defines a (d, e)-diagram

for any d � ρ and e � γ.

2.2. Notation. The empty diagram (0, . . . , 0) ∈ Nd is denoted by /� and

the full (d× e)-rectangle (e, . . . , e) ∈ Nd by [d× e].

2.3. Definition. Let d, e � 1 and let Λ be a Young diagram in (d×e)-

frame. The decreasing sequence Λ1 � Λ2 � . . . � Λd can be written in a
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unique way as a series of equalities and strict inequalities :

(11)

Λ1 = · · · = Λd1︸ ︷︷ ︸
d1 terms

> Λd1+1 = · · · = Λd2︸ ︷︷ ︸
d2−d1 terms

> · · · > Λdk−1+1 = · · · = Λdk︸ ︷︷ ︸
dk−dk−1 terms

= Λd .

Note that dk = d. The integers k � 1 and 0 < d1 < . . . < dk depend on

Λ. If we need to stress this, we shall write k = k(Λ) and di = di(Λ) for

1 � i � k(Λ).

For fixed d and e, there is a bijection (pictured in Figure 3) between the

Young diagrams Λ in (d×e)-frame and pairs of k-tuples of integers

(12)
d = (d1, . . . , dk) such that 0 < d1 < · · · < dk = d,

e = (e1, . . . , ek) such that 0 � e1 < · · · < ek � e,

with 1 � k � d. The integers k = k(Λ) and di = di(Λ) are the ones above and

we set ei = ei(Λ) := e− Λdi
for all i = 1, . . . , k. The converse construction is

obvious.

d

k = 4

d4

d3

d2

d1

e

d

e3

d1
e1

e2

k = 3

d2

d3

e

Λ
Λ

e1=0

e3

e4

e2

Figure 3. Two examples of the two k-tuples (d1, . . . , dk) and

(e1, . . . , ek) corresponding to a Young diagram Λ in (d × e)-

frame.

2.4. Definition. Let d, e � 1. Fix a complete flag of vector bundles overX

(13) 0 = V0 � V1 � · · ·� Vi � · · ·� Vd+e =: V .

Note that we baptize V the bundle of dimension d+ e, to lighten notation.

Let Λ be a Young diagram in (d×e)-frame. By Definition 2.3, this amounts

to a pair (d, e) of k-tuples of integers satisfying (12), and hence satisfying (2).

We can now apply Definition 1.6 to d and e and the flag (3) taken from (13)
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above :

(14)

F lX(d, e,V•; Λ) := F lX(d, e,V•)=

⎧⎨
⎩

0 � Pd1�

e1

� Pd2�

e2

� · · · � Pdk�

ek

0 � Vd1+e1 � Vd2+e2 � · · · � Vdk+ek

⎫⎬
⎭ .

As usual, instead of F lX(d, e,V•; Λ), we might simply write F l(Λ) or anything

“in between” depending on what is obvious from the context.

As in (5), there is a natural morphism fΛ from F lX(d, e; Λ) to Gr(d,V),

(15)
fΛ = fd,e;Λ := fd,e,V : F lX(d, e; Λ) −→ Gr(d,V)

(Pd1
, . . . ,Pdk

) �−→ Pdk
.

When X = Spec(F ) is a field, one can understand the image of fΛ as

the subset of those subspaces Pd � V whose intersection with each Vdi+ei is

of dimension at least di. This is the classical Schubert cell associated to the

diagram Λ. It is pretty clear that fΛ is a birational morphism. The advantage

of F lX(d, e; Λ) over the Schubert cell is that F lX(d, e; Λ) is not singular by

Proposition 1.13.

2.5. Example. Following up on Example 1.7, when Λ = /� is the empty

diagram, that is for k = 1 and e1 = e, we have F lX(/�) = GrX(d,V) and f/�
is the identity. At the other end, for Λ = [d× e] the whole (d× e)-rectangle,

that is for k = 1 and e1 = 0, we have F lX(d, e; Λ) = GrX(d,Vd) = X and fΛ
is a closed immersion.

2.6. Definition. Let Λ be a Young diagram in (d×e)-frame. We define

ρ(Λ) ∈ {0, . . . , d} to be the number of non-zero rows of Λ. Complementarily,

we define ζ(Λ) = d−ρ(Λ) to be the number of zero rows at the end of Λ, that

is

ρ(Λ) = d and ζ(Λ) = 0 if Λd > 0 ,

ρ(Λ) = dk−1 and ζ(Λ) = d− dk−1 if Λd = 0 .

For the empty diagram, we have ρ(/�) = 0 and ζ(/�) = d.

We are going to use a certain class of (d, e)-diagrams, that we call the even

(d, e)-diagrams. Defining them by a picture is very easy. The condition to be

even is that any segment of the (d, e)-diagram which does not belong to the

outer (d×e)-frame must have even length; see Figure 2. The formal definition

is the following.

2.7. Definition. Let Λ be a Young diagram in (d×e)-frame and let d and

e be the associated k-tuples as in Definition 2.3. We say that Λ is even if all
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the following conditions are satisfied:

(i) di+1 − di is even for all i = 1, . . . , k − 2 (for k � 3, otherwise no

condition),

(ii) ei+1 − ei is even, for all i = 1, . . . , k − 1 (for k � 2),

(iii) when 0 < e1 < e we also require d1 to be even, and

(iv) when 0 < ek < e we also require dk − dk−1 to be even.

2.8. Example. For any d, e � 1, both the empty diagram /� and the full-

rectangle [d× e] are even (d, e)-diagrams (see Notation 2.2). Indeed, in both

cases, k = 1 and d = (d), whereas e(/�) = (e) and e([d× e]) = (0); so there is

no condition to check.

When d = 1 or e = 1, these are the only even Young diagram in (d×e)-

frame.

For more examples, the reader can find all even Young diagrams in the

cases (d, e) = (4, 4), (4, 5) and (5, 5) in Figures 14, 15 and 16, at the end of

the paper.

2.9. Remark. Definition 2.7 depends on d and e as well as on the Young

diagram Λ. For an even (d, e)-diagram Λ to remain even in a bigger frame,

we might have one or two more conditions to check, namely (iii) or (iv) in

Definition 2.7, in the case where Λ was touching the right border or the bottom

border of its (d×e)-frame.

2.10. Remark. For each even (d, e)-diagram we will construct an ele-

ment in one of the Witt groups of the Grassmannian GrX(d,V). The proof

that these Witt classes actually form a total basis will proceed by induction

on d + e = rk(V), using the long exact sequence of localization associated

to a natural “cellular” decomposition of the Grassmannians. In that proof,

we shall need the description in terms of Young diagrams of the various Witt

group homomorphisms appearing in that long exact sequence. As we shall see,

these are the ones of the next proposition. This explains why the following

constructions are relevant here.

2.11. Definition. Let Λ′ be an even (d, e− 1)-diagram with d ≥ 1, e ≥ 2

and such that ζ(Λ′) is even. We define the (d, e)-diagram ῑ(Λ′) as

(16) ῑ(Λ′) = (Λ′
1 + 1, . . . ,Λ′

d + 1).

Let Λ be an even (d, e)-diagram with d ≥ 2, e ≥ 1 and such that Λd = 0.

We define the (d− 1, e)-diagram ῡ(Λ) as

(17) ῡ(Λ) = Λ|d−1,e
.
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Let Λ′′ be an even (d− 1, e)-diagram with d, e ≥ 2 and such that Λ′′
d−1 is

odd. We define the (d, e− 1)-diagram ∂̄(Λ′′) as

(18) ∂̄(Λ′′) = (Λ′′
1 − 1, . . . ,Λ′′

d−1 − 1, 0).

See Figures 4, 5 and 6.

e

dd

0

even

odd

e− 1

Figure 4. Morphism ῑ on various (d, e− 1)-diagrams Λ′.

d− 1d

0

e e

Figure 5. Morphism ῡ on various (d, e)-diagrams Λ.
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0

d− 1

odd

even

d

e− 1e

Figure 6. Morphism ∂̄ on various (d− 1, e)-diagrams Λ′′.

2.12. Proposition. (a) When d ≥ 1 and e ≥ 2, the map ῑ defines a

bijection{
even Young (d, e− 1)-diagrams

Λ′ such that ζ(Λ′) is even

}
�� � ��

{
even Young (d, e)-diagrams

Λ such that Λd > 0

}

Λ′ � �� ῑ(Λ′) = (Λ′
1 + 1, . . . ,Λ′

d + 1)

(Λ1 − 1, . . . ,Λd − 1) Λ.���

(b) When d ≥ 2 and e ≥ 2, the map ῡ defines a bijection{
even Young (d, e)-diagrams

Λ such that Λd = 0

}
�� � ��

{
even Young (d− 1, e)-diagrams

Λ′′ such that Λ′′
d−1 is even

}

Λ � �� ῡ(Λ) = Λ|d−1,e

(Λ′′
1 , . . . ,Λ

′′
d−1, 0) Λ′′.���

(c) When d, e ≥ 2, the map ∂̄ defines a bijection{
even Young (d− 1, e)-diagrams

Λ′′ such that Λ′′
d−1 is odd

}
�� � ��

{
even Young (d, e− 1)-diagrams

Λ′ such that ζ(Λ′) is odd

}

Λ′′ � �� ∂̄(Λ′′) = (Λ′′
1 − 1, . . . ,Λ′′

d−1 − 1, 0)

(1 + Λ′
1, . . . , 1 + Λ′

d−1) Λ′.���

Proof. The proof essentially consists in checking that the announced con-

structions are well defined and that they preserve even diagrams. Checking
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that they are mutually inverse constructions is straightforward. The nota-

tion Λ|d−1,e
is the obvious one : we view a diagram with empty last row in

a smaller frame. All this is most easily performed and followed on pictures.

For instance, the maps from left to right are pictured in the upper parts of

Figures 4, 5 and 6. �

3. Total bases and lax-similitude

3.1. Convention. From now on, X denotes a regular Noetherian Z[ 12 ]-

scheme of finite Krull dimension.

For precise statements and proofs of our results, it is convenient to use the

language of total bases and lax similitude, as developed in [7]. Here is a brief

list of the relevant facts.

We restrict to the subcategory SX of X-schemes πY : Y → X that are

smooth over X and that satisfy the following assumptions on Picard groups

and global sections [7, Definition 4.1]:

(I) The map π∗
Y : Pic(X) → Pic(Y ) is injective.

(II) The abelian group PicX(Y ) := Pic(Y )/π∗
Y

(
Pic(X)

)
has no 2-torsion.

(III) The map π∗
Y : Gm(X) → Gm(Y )/Gm(Y )2 is surjective.

This ensures that the notions considered below are well behaved.

3.2. Remark. All schemes considered in the computations of the remain-

ing Sections 4 to 6 are in the category SX . Indeed, most are flag vari-

eties constructed iteratively from X as towers of Grassmann bundles (see

Lemma 1.11), so the Picard group assumptions follow from Proposition 1.13.

Similarly, Property (III) follows from [12, Theorem 2.3.1], i.e. in all our ex-

amples, Gm(X) → Gm(Y ) is already surjective. The remaining schemes are

vector bundles over these flag varieties, so each of them has the same Picard

group and invertible global sections as its base.

3.3. Definition ([7, Definition 2.3]). Let L1 and L2 be line bundles over

a scheme Y . An alignment A : L1 � L2 is a pair A = (M,ψ) consisting of

a line bundle M over Y together with an isomorphism ψ : M⊗2 ⊗ L1
∼→ L2.

Of course, such an alignment exists if and only if [L1] = [L2] in Pic(Y )/2. It

induces an isomorphism on Witt groups

A� : W∗(Y, L1)
∼→ W∗(Y, L2)

defined as the composition of multiplication by the form M
∼→ M∨ ⊗ M⊗2

(square periodicity) and of the identification of the dualities with values re-

spectively in M⊗2 ⊗ L1 and in L2 using ψ.
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When Y is a scheme in SX , we also use a relative notion. An X-alignment

from L1 to L2 is an alignment A : π∗
Y K ⊗ L1 � L2 for some line bundle K

over X. We denote this by A : L1
�
K

L2.

3.4. Definition (see [7, Definition 2.5]). Two Witt classes w1 ∈ Wj(Y, L1)

and w2 ∈ Wj(Y, L2) are lax-similar if there exists an alignment A such that

w2 = A�(w1). This is an equivalence relation written w1 � w2. Note also

that w1 � w2 forces [L1] = [L2] in Pic(Y )/2.

3.5. Definition (see [7, Definition 3.4]). Let f : Ȳ → Y , let L be a line

bundle on Y and let L̄ be a line bundle on Ȳ . If an alignment Ā : f∗L � L̄

exists, we define a lax pull-back

Ā� ◦ f∗ : W∗
Z(Y, L) −→ W∗

f−1Z(Ȳ , f∗L)
∼−→ W∗

f−1Z(Ȳ , L̄) .

3.6. Remark. It is easy to see that two lax pull-backs (along the same

morphism) of lax-similar elements are lax-similar.

3.7. Definition (see [7, Definition 3.5]). Similarly, if an alignment Ā :

L̄ � ωf ⊗ f∗L exists, we define a lax push-forward

f∗ ◦ Ā� : W∗+d
Z̄

(Ȳ , L̄)
∼−→ W∗+d

Z̄
(Ȳ , ωf ⊗ f∗L) −→ W∗

fZ̄(Y, L) .

The freedom in the use of lax push-forwards is summarized in the following:

3.8. Theorem. Let f : Ȳ → Y be a morphism of schemes in SX and let

L̄ be a line bundle over Ȳ .

(a) A lax push-forward starting from W∗(Ȳ , L̄) exists if and only if

(19) [L̄] ∈ Im
(
[ωf ]⊗ f∗ : Pic(Y )/2 → Pic(Ȳ )/2

)
or equivalently replacing Pic(−)/2 by PicX(−)/2.

(b) Assuming (19) holds, the lax push-forward can be chosen to land in

W∗(Y, L) for a line bundle L on Y if and only if

(20) [ωf ⊗ f∗L] = [L̄] ∈ Pic(Ȳ )/2.

(c) Given two line bundles L1 and L2 on Y both satisfying (20), lax push-

forwards from W∗(Ȳ , L̄) to W∗(Y, L1) and to W∗(Y, L2) are lax-similar

on Y (i.e. there exists an alignment A� : W∗(Y, L1) → W∗(Y, L2)

turning one push-forward into the other) if and only if

(21) [L1] = [L2] ∈ Pic(Y )/2

or equivalently replacing Pic(−)/2 by PicX(−)/2. This condition is

automatically satisfied if f∗ : PicX(Y )/2 → PicX(Ȳ )/2 is injective, so

in that case, there is no need to specify the specific target of the lax

push-forward if one is only interested in lax-similitude classes of the

images.
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Proof. This is detailed in § 4 of [7]. The first two parts are straightforward

from (1). Use [7, Lemma 4.3 (d)] to replace Pic(−)/2 by PicX(−)/2 in (a). To

replace Pic(−)/2 by PicX(−)/2 in the last statement, use [7, Lemma 4.3 (c)],

in which case [7, Proposition 4.7] gives that the images are lax-similar. �
3.9. Remark. Remark 3.6 and Theorem 3.8 mean that as long as one is

only interested in elements up to lax-similarity, there is no need to be specific

about where lax pull-backs and push-forwards start and land, as long as they

exist. One only needs to keep track of classes of line bundles in PicX(−)/2.

See also [7, Remark 2.10] for connecting homomorphisms.

Let Y be a scheme in SX and let Z be a closed subset of Y . Let I be a

set. Given a family of line bundles (Li)i∈I and a class p ∈ PicX(Y )/2, let Ip
denote the subset of those i ∈ I such that [Li] = p. Let (wi)i∈I be a family

of Witt classes, for various shifts and twists : wi ∈ Wji(Y, Li).

3.10. Definition. Let L be a line bundle on Y and let k ∈ Z be an

integer. Let J ⊂ I[L] be a finite subset. Given a family of X-alignments

(Ai : Li
�
Ki

L)i∈J and a family of coefficients (λi)i∈J with λi ∈ Wk−ji(X,Ki),

we can form the linear combination∑
i∈J

λi ·
Ai

wi :=
∑
i∈J

Ai
�(π∗

Y (λi) · wi

)
,

which is an element of Wk(Y, L). See details in [7, § 6].
3.11. Definition. Let P ⊆ PicX(Y )/2; typically P is the whole

PicX(Y )/2. The family (wi)i∈I is called a total basis of the P -part of the

Witt groups of Y over X with support in Z, if [Li] ∈ P for all i and if for

every line bundle L with [L] ∈ P , we have the following two properties :

(a) Total generation : Any element in Wk(Y, L) can be obtained as a

linear combination of a finite subfamily (wi)i∈J , i.e. alignments and

coefficients as in Definition 3.10 can be found yielding the element as

the linear combination.

(b) Total independence : Any linear combination of the wi yielding the

zero element in Wk(Y, L) has zero coefficients.

A total basis yields the following result, expressed in classical terms.

3.12. Theorem ([7, Proposition 6.9]). For every line bundle L with [L] ∈
P , every k ∈ Z and for every choice, for those i ∈ I[L], of a line bundle Ki

over X and a Ki-alignment Ci : Li
�
Ki

L, the following map is an isomorphism

(22)
θ = θ(C•) :

⊕
i∈I[L]

Wk−ji(X,Ki)
∼−→ Wk

Z(Y, L)

(xi)i∈I[L]
�−→

∑
xi ·Ci

wi .
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3.13. Remark. In the same spirit, if one replaces elements of a total

basis by lax-similar ones (Definition 3.5), they still form a total basis; see [7,

Cor. 6.14].

Finally, here is a way to keep track of total bases along localization se-

quences. This will be our main tool to construct inductively total bases for

Grassmann varieties, together with homotopy invariance and dévissage, under

which total bases are naturally preserved (see [7, Corollaries 6.13 and 6.16]

for precise statements).

Let U be the open complement of a closed subset Z ⊂ Y , and let υ : U ↪→ Y

be the corresponding open embedding. Assume U ∈ SX . Let e : W∗
Z(Y, L) →

W∗(Y, L) be the extension of the support map. Recall from [3] that there is

a long exact sequence of localization

(23)

· · · −→ Wi
Z(Y, L)

e−→ Wi(Y, L)
υ∗
−→ Wi(U, υ∗L)

∂−→ Wi+1
Z (Y, L) → · · · .

3.14. Theorem (see [7, Theorem 7.1]). Let P be a subset of PicX(Y )/2.

Assume that the restriction υ∗
|P : P → PicX(U)/2 is injective and let PU =

υ∗(P ) ⊂ PicX(U)/2.

Let I, J and K be sets and let (w′
i)i∈I and (wj)j∈J be Witt classes on Y ,

let (vi)i∈I and (v′k)k∈K be Witt classes on Y with support in Z and let (uk)k∈K
and (u′

j)j∈J be Witt classes on U , whose line bundles are restricted from Y .

Suppose the following conditions hold (see Figure 7) :

(a) for every i ∈ I, we have lax-similitude e(vi) � w′
i;

(b) for every j ∈ J , we have lax-similitude υ∗(wj) � u′
j;

(c) for every k ∈ K, we have lax-similitude ∂(uk) � v′k .

Then, the following properties are satisfied :

(1) for every i ∈ I, we have υ∗(w′
i) = 0;

(2) for every j ∈ J , we have ∂(u′
j) = 0;

(3) for every k ∈ K, we have e(v′k) = 0.

(4) If, furthermore,

(i) the (vi)i∈I and (v′k)k∈K form together a total basis of the P -

part of the Witt groups of Y with support in Z, over X,

(ii) the (uk)k∈K and (u′
j)j∈J form together a total basis of the PU -

part of the Witt groups of U , over X,

then the (w′
i)i∈I and (wj)j∈J form together a total basis of the P -part

of the Witt groups of Y , over X.

Finally, we will need the following fact about push-forwards along blow-up :

3.15. Proposition. Let X be a quasi-compact and quasi-separated scheme

(e.g. an affine or a Noetherian scheme) and let Z ↪→ X be a regular immersion
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vi w′
i uk

v′k wj u′
j

e

υ∗

∂

P -part
of WZ(Y )

P -part
of W(Y )

PU -part
of W(U)

Figure 7. Families mapping to each other up to lax-

similitude in Theorem 3.14. No arrow means mapped to zero.

of pure codimension d. Let π : B → X be the blow-up of X along Z. Then,

(a) there is a natural isomorphism Rπ∗(OB) ∼= OX in the derived category

of X;

(b) assume further that X is regular and that ωB/X is a square, which

happens exactly when d is odd by [6, Proposition A.11(iii)]. Then

a lax push-forward (in the sense of Definition 3.7) W0(B,OB) →
W0(X,OX) maps the unit class 1B to an element lax-similar to the

unit class 1X .

Proof. Part (a) can be found in SGA 6, see [2, Lemme VII.3.5, p. 441] or

the more recent account in [19, Lemme 2.3 (a)].

Part (b) follows from (a) and holds at the level of symmetric forms al-

ready, before taking Witt classes. Indeed, when d = 1, we have B = X and

there is nothing to prove. When d � 3, then line bundles over X, and ho-

momorphisms between them, are determined by their restriction to the open

complement U = X �Z of Z since Z is of codimension at least 2. The result

follows by the base-change formula for push-forwards [8, Theorem 5.5] and by

Theorem 3.8, since π|
π−1(U)

: π−1(U) → U is an isomorphism. �

4. Construction of the total basis

For this section, let Λ be a Young diagram in (d×e)-frame and recall the

k-tuples d and e associated to Λ in Definition 2.3.

4.1. Remark. Our goal is to construct classes in the total Witt group of

GrX(d,V) by lax-pushing-forward the unit form 1 ∈ W(F lX(Λ)) =
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W0(F lX(Λ),O) along the morphism fΛ : F lX(Λ) → GrX(d,V) of (15). As

recalled in Theorem 3.8(a), this lax push-forward only exists conditionally,

namely only when the class of the relative canonical bundle ωFlX(Λ)/GrX(d,V)

in PicX(F lX(Λ))/2 belongs to the image of

(fΛ)
∗ : PicX(GrX(d,V))/2 −→ PicX(F lX(Λ))/2 .

This is true if and only if the following conditions are satisfied:

(a) di − di−1 + ei+1 − ei is even for every i = 2, . . . , k − 1 (for k � 3);

(b) when 0 < e1 < e and k ≥ 2, require, moreover, d1 + e2 − e1 even.

We shall be more precise in Proposition 4.8 below, but the reader can verify

our claim using (10) in Corollary 1.14. For this, note that Δd1
= [detVd1

]

comes from X when e1 = 0 and that Δd always comes from GrX(d,V) since
(fΛ)

∗(ΔGrX(d,V)
d

)
= Δ

FlX(Λ)
d , as can be checked on the tautological bundles

already.

Conditions (a) and (b) hold, in particular, when Λ is even in the sense of

Definition 2.7. Indeed, for such Λ not only the sum di − di−1 + ei+1 − ei is

even but actually both terms di − di−1 and ei+1 − ei are. Compare Figure 8.

2

3

4

Figure 8. Framed Young diagram satisfying Conditions (a)

and (b) of Remark 4.1 but which is not even (at all).

When (a) and (b) hold (e.g. for Λ even), there exists a line bundle L on

GrX(d,V) such that [ωfΛ ] · f∗
Λ[L] = 1 in Pic(F lX(Λ))

/
2. Therefore, there is a

lax push-forward 3.7 along f = fΛ, i.e. a homomorphism :

W0
(
F l(Λ),O

)
� W0

(
F l(Λ), ωfΛ ⊗ f∗

ΛL
) (fΛ)∗→W|Λ| (GrX(d,V), L

)
.

(Use that dim(fΛ) = dimF lX(Λ)−dimGrX(d,V) = −|Λ| by Propositions 1.3

and 1.13.) Consequently, we can produce a Witt class over GrX(d,V), by
pushing the unit form in the first group. This is what we are going to do

below for Λ even, making the class of L in Pic(GrX(d,V))/2 more explicit

in terms of the diagram Λ. Once this class of L in Pic(GrX(d,V))/2 or in

PicX(GrX(d,V))/2 is fixed, the choices involved in the lax push-forward of
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Definition 3.7 will be irrelevant. A nice fact is that this class in the Picard

group can be read very easily on the diagram, as we now explain.

4.2. Remark. The perimeter of a Young diagram Λ is an even integer.

Indeed, from the lower-left corner of Λ to its upper-right corner, there are

two paths which follow the boundary (the upper path and the lower path)

and they have the same length, namely the lattice distance between these two

corners.

4.3. Definition. Let Λ be a Young diagram. We define t(Λ) ∈ Z/2 to be

the class of half the perimeter of Λ. From the above remark, t(Λ) is also the

class of the (lattice) distance from the lower-left corner of Λ to its upper-right

corner. That is :

t(Λ) = [Λ1 + ρ(Λ)] ∈ Z/2

where ρ(Λ) is the number of non-zero rows of Λ (Definition 2.6). Note that

this Definition does not depend on an ambient frame.

4.4. Remark. On an even Young diagram Λ in (d×e)-frame, there is

another way to read t(Λ) ∈ Z/2 on the diagram. Add the (parity of) the

length of the segments where Λ touches the right and the bottom of the

frame; see Figure 9. This is justified and generalized in Proposition 4.5.

1

2
1

1

5

4

t(Λ) = 0 t(Λ) = 1 t(Λ) = 0t(Λ) = 0 t(Λ) = 1

Figure 9. Class t(Λ) ∈ Z/2, for different Λ.

4.5. Proposition. Let Λ be an even Young diagram in (d×e)-frame and let

d, e be the associated k-tuples (Definition 2.3). Then t(Λ) = [di + (e− ej)] ∈
Z/2 for any i, j ∈ {1, . . . , k} such that ei < e (only i = k should be avoided

when ek = e).

Proof. Measure the half-perimeter of Λ as the length of the lower boundary

of Λ, from the lower-left corner of Λ to its upper-right corner (see Remark

4.2). Since Λ is even, all segments on this lower half-perimeter which are

not on the outside frame have even length. So, the only two segments to

contribute to the lower half-perimeter with possible odd length, are on the

outside (d×e)-frame, i.e. :

• the vertical segment most to the right, which has length d1, and
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• the lowest horizontal segment, which has length e−ek when Λ touches

the lower part of the (d×e)-frame (otherwise ek = e and this length

is even).

In any case, this shows that t(Λ) = [d1+(e−ek)] ∈ Z/2, that is, the announced

formula for i = 1 and j = k. The other formulas follow from this one since by

Definition 2.7 the successive differences di − di−1 and ej+1 − ej are even for

all i = 2, . . . , k−1, for all j = 1, . . . , k−1, and also for i = k when ek < e. �
4.6. Definition. Let Λ be an even Young diagram in (d×e)-frame. We

define the twist T (Λ) of Λ as the following class in Pic(GrX(d,V))/2 =

Pic(X)/2 ⊕ Z/2 ·Δd (see Corollary 1.4 and recall that Δd is the determinant

of the tautological bundle) :

T (Λ) = T (Λ, d, e) := [detV ]ρ(Λ) ·Δt(Λ)
d ,

where we recall that t(Λ) is the half-perimeter of Λ modulo 2 (Definition 4.3)

and that ρ(Λ) is the number of non-zero rows of Λ (Definition 2.6).

4.7. Remark. The important part of T (Λ) is of course Δ
t(Λ)
d , which is not

coming from the base X. Also, when V is trivial, the other term disappears

anyway; this holds, in particular, with X = Spec(R) for a local ring R (e.g. a

field).

4.8. Proposition. Let Λ be an even Young diagram in (d×e)-frame. Then

[ωfΛ ] · f∗
Λ

(
T (Λ)

)
= 1 in Pic

(
F lX(Λ)

)/
2 .

Proof. Suppose first that k = k(Λ) is at least 2. Remove from (10) all even

exponents coming from the fact that Λ is even and use Proposition 4.5 for

i = k − 1 and j = k. This gives in Pic
(
F lX(Λ)

)/
2 :

[ωfΛ ] = [detVd1+e1 ]
d1 · [detVd+ek ]

d+dk−1 · [detV ]d ·Δd1

d1
·Δt(Λ)

d .

Now observe that [detVd1+e1 ]
d1 ·Δd1

d1
= 1 in Pic

(
F lX(Λ)

)/
2. Indeed, either

e1 > 0, hence d1 is even, or e1 = 0, hence Δd1
= [detVd1

] by Remark 1.10.

So, we can simplify the above equation in Pic
(
F lX(Λ)

)/
2 :

[ωfΛ ] = [detVd+ek ]
d+dk−1 · [detV ]d ·Δt(Λ)

d .

Now, if ek < e, then d − dk−1 = dk − dk−1 is even and ρ(Λ) = d ; on the

other hand, if ek = e, then ρ(Λ) = dk−1. In both cases, the above expression

becomes [detV ]ρ(Λ) ·Δt(Λ)
d , which is T (Λ) by Definition 4.6.

Similarly, the case k = 1 is an easy consequence of Corollary 1.14. �
Let Λ be an even Young diagram in (d×e)-frame. Choose LΛ a line bundle

of class T (Λ) in Pic
(
GrX(d,V)

)
/2. (For simplicity, choose L/� = O.) By

the equality of Proposition 4.8, there exists an isomorphism ψΛ : M⊗2
Λ

∼→
ωfΛ⊗f∗

ΛLΛ over F lX(Λ), i.e. an alignment AΛ = (MΛ, ψΛ) : OFlX(Λ) � ωfΛ⊗



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

624 PAUL BALMER AND BAPTISTE CALMÈS

f∗
ΛLΛ, which induces a lax push-forward along the morphism fΛ : F lX(Λ) −→
GrX(d,V), as in Definition 3.7 :

(24) (fΛ)∗ ◦AΛ
� : W0

(
F lX(Λ),O

)
−→ W|Λ| (GrX(d,V), LΛ

)
.

4.9. Definition. For any even Young diagram Λ in (d×e)-frame, we define

(25) φd,e(Λ) ∈ W|Λ| (GrX(d,V) , LΛ

)
as the image of the unit form 1 ∈ W0(F lX(Λ),O) by the lax push-forward

constructed in (24).

4.10. Remark. The definition of φd,e(Λ) involves the choice of LΛ in the

class T (Λ) and the choices of MΛ and of the isomorphism ψΛ : M⊗2
Λ

∼→ ωfΛ ⊗
f∗
ΛLΛ. By Theorem 3.8(c), the lax-similitude class of φd,e(Λ) is independent

of these choices. By Remark 3.13, our main Theorem 6.1 (that they form a

total basis) will hold regardless of these choices. For these reasons, and also to

lighten notation, we do not incorporate these choices in the notation φd,e(Λ).

4.11. Example. Let Λ = /� be the empty Young diagram in (d×e)-frame,

which is even, as we know. Then T (Λ) is trivial and f/� : F lX(d, e; /�) →
GrX(d,V) is the identity, so ωfΛ = O and φd,e(/�) = 1 ∈ W0(GrX(d,V),O)

is the unit form on the Grassmannian if LΛ = MΛ = O and the isomorphism

M⊗2
Λ � ωfΛ ⊗ f∗

ΛLΛ is the trivial one. (Otherwise, φd,e(/�) is only lax-similar

to the unit form.)

4.12. Remark. By Proposition 3.15, the lax-similitude class of our Witt

classes φd,e(Λ) does not really depend on the chosen desingularization F l(Λ)

of the Schubert subvariety corresponding to the Young diagram Λ. Indeed

the unit will remain the unit when pushed-forward between two such desin-

gularizations, if one is obtained from the other by blow-up. (The condition

on the relative bundle being even in Proposition 3.15 is automatically satis-

fied if both desingularizations have even relative bundle with respect to the

Grassmannian.)

5. Cellular decomposition

We describe the usual relative cellular decomposition of Grassmannians.

Fix d, e � 2 for the whole section.

5.1. Notation. Fix a complete flag V• of vector bundles on X,

0 = V0 � V1 � · · ·� Vd+e = V ,
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as in (13). We set V1 = Vd+e−1 to be the chosen codimension one subbundle

of V . We have an obvious closed immersion GrX(d,V1) ↪→ GrX(d,V), of

codimension d, whose open complement is denoted by UX(d,V•).

5.2. Notation. Let Pd �V be a subbundle of rank d. We write Pd�̇V1 to

express that Pd is not a subbundle of V1 but moreover satisfies the equivalent

conditions :

(a) The natural map from Pd/(Pd ∩ V1) = (Pd + V1)/V1 into V/V1 is an

isomorphism.

(b) Pd ∩ V1 is a subbundle of Pd (in the strong sense of Definition 1.1).

Over a field, this amounts to Pd �⊂ V1 but this is not sufficient in general.

5.3. Definition. Using the notation of Section 1, we have a commutative

diagram,

(26)

GrX(d,V1) �
� ι ��| GrX(d,V) UX(d,V•)� �υ�� ◦

α

��

� �

υ̃

������
���

���
���

�
◦

F lX((d− 1, d), (e, e− 1))

π̃

��

� � ι̃ ��| F lX((d− 1, d), (e, e))

π

��

α̃ �� F lX(d− 1,V1) ,

which looks as follows on points :

(27)

{Pd � V1} �
� ι ��| {Pd � V} {Pd�̇V1}� �υ�� ◦

� 	

υ̃

������
����

����
����

◦ α

��
{Pd−1 � Pd � V1}

π̃

��

� � ι̃ ��| {Pd−1 � Pd � V | Pd−1 � V1}

π

��

α̃ �� {Pd−1 � V1} .

Here ι, ι̃, π, π̃ and α̃ are the obvious morphisms. The morphism υ̃ maps Pd

to the flag Pd−1 � Pd with Pd−1 := Pd ∩ V1 (see Notation 5.2). Finally α is

defined as α̃ ◦ υ̃.
5.4. Proposition. In Diagram (26), the scheme F lX((d − 1, d), (e, e))

is the blow-up of GrX(d,V) along GrX(d,V1) with exceptional fiber

F lX((d− 1, d), (e, e− 1)).

Proof. This is probably folklore to algebraic geometers. By compatibility

of blow-ups with pull-backs, we can reduce to the case where X is affine (even

X = Spec(Z)) and suppose that V is free and that V1 = ker(V�O) is the

kernel of a (split) epimorphism to O. We omit X in the notation for the rest

of the proof.

Let us check that B := F l((d − 1, d), (e, e)) has the universal property of

the blow-up (see [17, § 8.1.2, Corollary 1.16]), i.e. it is final among schemes

over Gr(d,V) in which the preimage of Z := Gr(d,V1) is an effective Cartier

divisor (i.e. a codimension one closed subscheme locally given by a principal
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ideal). Let us first check that B indeed has this property. Note that the left-

hand square of (26) is Cartesian. Moreover, we have an identification B =

F l((d−1, d), (e, e)) = PY (V/Td−1) where Y = Gr(d−1,V1) as in Lemma 1.11.

Under this identification, the inverse image F l((d− 1, d), (e, e − 1)) of Z be-

comes PY (V1/Td−1). So this inverse image is locally Pe−1
Y ⊂ Pe

Y hence an

effective Cartier divisor, as wanted.

Suppose now that f : W → GrX(d,V) is a morphism for which

f−1(GrX(d,V1)) is an effective Cartier divisor. Let us consider W as a func-

tor of points and show that there exists a unique morphism g : W → B

such that π̃ ◦ g = f . Consider on Gr(d,V), the morphism s : Td → O ob-

tained by composing the inclusion Td �V and the projection V �V/V1 = O.

By definition, Z is the zero locus of this morphism, i.e. it is defined by

the ideal im(s) ⊂ OGr(d,V). By assumption on f : W → GrX(d,V), the

ideal im(f∗(s)) = f−1(im(s)) ⊂ OW is invertible. Hence, over each point

Spec(R) → W of W , ker(s|R) is a codimension one subbundle of Td, which
is contained in V1 by construction. This defines the wanted morphism g :

W → B sending each Spec(R) → W to ker(s|R) � Pd. Uniqueness is easy.

If g : W → B satisfies g ◦ π̃ = f , then g maps a point w : Spec(R) → W to

Pd−1 �Pd with Pd = f(w) forced. On the other hand Pd−1 ⊂ V1 forces Pd−1

to be in ker(s|R), hence to be equal to it by dimension counting. �

5.5. Definition. Let BX(d,V•) = F lX((d− 1, d), (e, e)) be the blow-up of

GrX(d,V) along GrX(d,V1) and let EX(d,V•) = F lX((d− 1, d), (e, e− 1)) be

the exceptional fiber. By (26), GrX(d,V) now has a decomposition as in [6,

Hypothesis 1.2], namely there exists an auxiliary morphism α̃ : BX(d,V) →
Y := GrX(d− 1,V1) from the blow-up to another scheme Y , such that α :=

α̃ ◦ υ̃ is an A∗-bundle :

(28)

GrX(d,V1) �
� ι ��| GrX(d,V) UX(d,V•)� �υ�� ◦

� �

υ̃

������
����

����
���

◦ α

��
EX(d,V•)

π̃

��

� � ι̃ ��| BX(d,V•)

π

��

α̃ �� GrX(d− 1,V1) .

Indeed, α is an Ae-bundle because of the canonical isomorphism between

UX(d,V•) and PY (V/T Y
d−1)�PY (V1/T Y

d−1), under which α corresponds to the

structure morphism to Y .

5.6. Remark. We compute the relevant Picard groups and canonical bun-

dles, via the methods of Section 1. Let us start with Picard groups, using (8).



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

WITT GROUPS OF GRASSMANN VARIETIES 627

Since Pic(X) is a direct summand of the Picard group of all schemes in (26),

we focus on the relative Picard groups PicX(−) := Pic(−)/Pic(X). Then

“PicX(−) of (26)” equals

(29)

ZΔd

π̃∗=( 01 )
��

ZΔd
ι∗=1��

π∗=( 01 )
��

υ∗=1 �� Zυ∗(Δd) = Zα∗(Δd−1)

ZΔd−1 ⊕ ZΔd ZΔd−1 ⊕ ZΔd
ι̃∗=( 1 0

0 1 )
��

υ̃∗=( 1 1 )������

��������

ZΔd−1.
α̃∗=( 10 )

��

α∗=1

��

(In the case X = Spec(R) for a local ring R, the Picard groups are exactly as

above.) Here we used that the closed subscheme GrX(d,V1) is of codimension

d � 2 in GrX(d,V) to see that υ∗ : Pic(GrX(d,V)) ∼= Pic(UX(d,V•)). We also

used that e � 2, otherwise e − 1 = 0 and Δd−1 ∈ Pic(X) by Remark 1.10.

(When d = 1, respectively e = 1, we loose all components ZΔd−1, respectively

all components ZΔd in the left column, in the previous diagram.) Alterna-

tively, “PicX((26)) = (29)” follows from the computation of the Picard groups

provided in [6, Proposition A.6]. Finally, the maps into the upper right corner

of Diagram (29) are deduced from

(30) υ∗(Δd) · α∗(Δd−1)
−1 = [V/V1] ,

which itself follows from Condition (a) in Notation 5.2.

We shall use push-forwards along some morphisms of (26). The classes of

the relevant relative canonical bundles in the respective (plain) Picard groups

are :

[ωι] = [V/V1]d ·Δ−1
d ,(31)

[ωπ] = [V/V1]d−1 ·Δd−1
d−1 ·Δ

1−d
d ,(32)

[ωι̃] = [V/V1] ·Δd−1 ·Δ−1
d ,(33)

[ωπ̃] = Δd
d−1 ·Δ1−d

d .(34)

Indeed, Corollary 1.14 gives (31), (32) and [ωιπ̃] = [ωπι̃] = [V/V1]d ·Δd
d−1 ·Δ−d

d ,

out of which the other two follow by multiplicativity of ω−. Again, when the

fixed complete flag V• = O•
X is trivial, the “noise” V/V1 vanishes.

We end this section with two geometric lemmas which will be useful in the

proof of the main theorem.

5.7. Lemma. Let d, e � 2 and let Λ be an even Young (d, e)-diagram

with empty last row (i.e. Λk = 0, i.e. ζ(Λ) > 0). Hence Λ|d−1,e
is an even

(d−1, e)-diagram. Then the base-changes to UX(d,V•) of the morphisms fd,e;Λ
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and fd−1,e;Λ|d−1,e
coincide, that is, we have two Cartesian squares:

(35)

GrX(d,V)

�

UX(d,V•)� �υ�� α ��

�

GrX(d− 1,V1)

F lX(d, e; Λ)

fd,e;Λ

��

U ′� ��� α′
��

��

F lX(d− 1, e; Λ|d−1,e
) .

fd−1,e;Λ|d−1,e

��

Proof. Let us check this on points. Let d and e be the k-tuples associated

to Λ as usual (Definition 2.3). We need to distinguish two cases, namely

dk − dk−1 > 1 and dk − dk−1 = 1.
When dk > dk−1 + 1, that is, when there is more than one zero line at the

end of Λ (i.e. ζ(Λ) > 1), we then have k(Λ|d−1,e
) = k(Λ) = k and the k-tuples

d(Λ|d−1,e
) and e(Λ|d−1,e

) are almost the same as d and e except for the last

entry of d(Λ|d−1,e
) which becomes d− 1. Diagram (35) then looks as follows

on points (as usual the Pi and P ′
j are “variables” whereas the Vi belong to

the fixed complete flag):

{Pd�V} {Pd �̇V1} {P ′
d−1 �V1}

· · · � Pdk−1�

ek−1

� Pd�

e

· · ·�Vdk−1+ek−1
�V

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

· · · � Pdk−1�

ek−1

� Pd�

e

· · ·�Vdk−1+ek−1
�V

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

V1

�̇

· · · � Pdk−1�

ek−1

� P ′
d−1�

e

· · ·�Vdk−1+ek−1
� V1

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

� ��� α ��

fd,e;Λ

�� ��

fd−1,e;Λ|d−1,e

��

� ��� α′ ��

� �

where the morphisms α send Pd to P ′
d−1 := Pd ∩ V1 and similarly for α′ .

On the other hand, when dk = dk−1 + 1, that is, when Λ has only one
zero line (i.e. ζ(Λ) = 1), then we have k(Λ|d−1,e

) = k(Λ) − 1 = k − 1 and

the (k−1)-tuples d(Λ|d−1,e
) and e(Λ|d−1,e

) are respectively d and e truncated

from their last entry. Diagram (35) then looks as follows on points :

{Pd �V} {Pd �̇V1} {P ′
d−1 �V1}

· · · � Pdk−1�

ek−1

� Pd�

e

· · ·�Vdk−1+ek−1
� V

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

· · · � Pdk−1�

ek−1

� Pd�

e

· · ·�Vdk−1+ek−1
� V

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

V1

�̇

· · · � Pdk−1�

ek−1

· · ·�Vdk−1+ek−1

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

� ��� α ��

fd,e;Λ

�� ��

fd−1,e;Λ|d−1,e

��

� ��� α′ ��

� �

where α still sends Pd to P ′
d−1 := Pd∩V1 and where fd−1,e;Λ|d−1,e

sends a flag

to Pdk−1
. Note that in this case, α′ drops the last subspace Pd in the flag.

In both cases, it is easy to check that the two squares are Cartesian. �
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5.8. Lemma. Let d, e � 2 and let Λ′′ be an even (d − 1, e)-diagram such

that Λ′′
d−1 is odd. Hence we can consider the even (d, e − 1)-diagram Λ′ =

(Λ′′
1 − 1, . . . ,Λ′′

d−1 − 1, 0). Then, there exists a commutative diagram

(36)

GrX(d,V1) EX(d,V•)
α̃ ι̃ ��π̃�� GrX(d− 1,V1)

F lX(d, e− 1; Λ′)

fd,e−1;Λ′

��

F ′

f ′

��

��
π′

��

�

F lX(d− 1, e; Λ′′)

fd−1,e;Λ′′

��

where EX(d,V•) is the exceptional fiber of Diagram (26) and where the

right-hand square is Cartesian. Moreover, either π′ is an isomorphism

or the scheme F ′ (with the morphism π′) identifies with the blow-up of

F lX(d, e− 1; Λ′) along a closed regular subscheme of odd codimension.

Proof. Let k = k(Λ′′), d = d(Λ′′) and e = e(Λ′′) as usual (Definition 2.3).

We need to distinguish two cases, namely Λ′′
d−1 > 1 and Λ′′

d−1 = 1.

Suppose first that Λ′′
d−1 > 1. Then k(Λ′) = k + 1 and d(Λ′) and e(Λ′) are

just d(Λ′′) and e(Λ′′) with one more entry at the end, namely d and e − 1

respectively. We can describe the pull-back in Diagram (36) as follows (on

points):

{Pd−1 �Pd �V1} {Pd−1 �V1}

Pd1�

� · · · � Pd−1�

� Pd�

Vd1+e1 � · · ·�Vd−1+ek �V1

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

Pd1�

� · · · � Pd−1�

Vd1+e1 � · · ·�Vd−1+ek

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

f ′

�� ��
��

��

�

This pull-back F ′ is F lX(d, e− 1; Λ′). So, take π′ = id. The morphism f ′

composed with π̃ sends a flag Pd1
�· · ·�Pd−1�Pd to Pd and so does fd,e−1;Λ′ .

Suppose now that Λ′′
d−1 = 1. Then k(Λ′) = k and e(Λ′) = e(Λ′′), whereas

d(Λ′) is obtained from d(Λ′′) by replacing its last entry by d. We can describe

the pull-back in Diagram (36) as follows :

{Pd−1 �Pd �V1} {Pd−1 �V1}

Pd1�

� · · · � Pdk−1�

� Pd−1�

� Pd�

Vd1+e1 � · · ·�Vdk−1+ek−1
�Vd+e−2�V1

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

Pd1�

� · · · � Pd−1�

Vd1+e1 � · · ·�Vd+e−2

⎧⎪⎨
⎪⎩

⎫⎪⎬
⎪⎭

f ′

�� ��
��

��

�
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where f ′ is the obvious morphism. The left-hand square of (36) is defined by :

{Pd �V1} {Pd−1 �Pd �V1}

Pd1�

� · · · � Pdk−1�

� Pd�

Vd1+e1
� · · ·�Vdk−1+ek−1

�V1

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

Pd1�

� · · · � Pdk−1�
� Pd−1�

� Pd�

Vd1+e1
� · · ·�Vdk−1+ek−1

�Vd+e−2�V1

⎧⎪⎨
⎪⎪⎩

⎫⎪⎬
⎪⎪⎭

��

f ′

��
π̃��

π′��

The morphism π′ : F ′ → F lX(d, e− 1; Λ′) simply drops Pd−1 in this case.

Let V2 := Vd+e−2 and Y := F lX((d1, . . . , dk−1), (e1, . . . , ek−1),V•). We

have F lX(d, e − 1; Λ′) = GrY (d − dk−1,V1/Tdk−1
) by Lemma 1.11. As in

Definition 5.5, we consider the blow-up BY (d− dk−1 , V2/Tdk−1 � V1/Tdk−1)

of GrY (d − dk−1,V1/Tdk−1
) along the closed regular immersion of

GrY (d− dk−1,V2/Tdk−1
). By Proposition 5.4, this blow-up coincides with F ′

and the morphism π of (27) here becomes the above morphism π′. In other

words, the following diagram commutes:

F lX(d, e− 1; Λ′) F ′π′
��

GrY (d− dk−1,V1/Tdk−1
) BY (d− dk−1, V2/Tdk−1 � V1/Tdk−1

) .
“π”��

The closed immersion GrY (d − dk−1,V2/Tdk−1
) ↪→ GrY (d − dk−1,V1/Tdk−1

)

is of odd codimension equal to d− dk−1. �

6. Main result

We are now ready to state and prove the main result of the paper.

6.1. Theorem. Let d, e � 1. Let X be a regular scheme over Z[ 12 ]. Let V be

a vector bundle of rank d+ e which admits a complete flag (13) of subbundles

(for instance, V free). Then, the elements φd,e(Λ) of Definition 4.9, for Λ

even, form a total basis of the Witt groups of GrX(d,V) over X.

Theorem 6.1 is unchanged when the φd,e(Λ) are changed to lax-similar

elements, so it holds independently of all choices in the construction of φd,e(Λ),

as mentioned in Remark 4.10. Furthermore, lax pull-backs, push-forwards and

connecting homomorphisms are compatible with lax-similarity by Remark 3.9.

We therefore use the following convention :

6.2. Convention. All pull-backs, push-forwards and connecting homo-

morphisms in the rest of Section 6 are lax.
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This precisely means that they are classical pull-backs, push-forwards and

connecting homomorphisms, preceded or followed by alignment morphisms in

order to start and end in Witt groups with specific line bundles, chosen for the

various statements to make sense. These alignments exist and the freedom in

their choices has no influence on the lax-similarity classes considered, by the

results of [7], as summarized in Section 3.

6.3. Remark. The case d = 1 or e = 1 is that of the projective bundle

P(V). In that case, Walter [20] has proved such a result (see [20, Proposi-

tion 8.1] when V has a complete flag). One can check that his generator ξ

is lax-similar in the sense of Definition 3.4 to our φ(Λ) when Λ = [d × e]

is the only non-empty even diagram in (d×e)-frame. The same result was

also proved in the case V = Od+e
X in [5], using methods closer to the present

geometric philosophy. We could therefore assume the starting point of the

induction (i.e. the case d = 1 or e = 1). However our proof of the induction

step covers this “fringe” case as well.

Proof of Theorem 6.1. The proof occupies the rest of Section 6. We pro-

ceed by induction on rk(V) = d + e. The initial case d = e = 1 will follow

from the same proof, except that we shall not use any induction hypothesis

in that case. In other words, from now on, when d + e ≥ 2, we can assume

the result for vector bundles V of rank less than d+ e. We fix a complete flag

0 = V0 � V1 � · · ·� Vd+e = V .

We set as before V1 := Vd+e−1.

The idea of the proof is to use Theorem 3.14 in the localization setting

of Section 5, i.e. for the regular closed immersion ι : Z = GrX(d,V1) ↪→
GrX(d,V) with open complement U = UX(d,V•). For every line bundle L on

GrX(d,V), the localization long exact sequence (23) is as follows:

(37)

··· �� Wi
Z(GrX(d,V), L) e �� Wi(GrX(d,V), L) υ∗ �� Wi(UX(d,V•), υ

∗L)��
�� ∂
��

Wi+1
Z (GrX(d,V), L) e �� Wi+1(GrX(d,V), L) υ∗ �� Wi+1(UX(d,V•), υ

∗L) �� ···

where e : Wi
Z(GrX(d,V), L) → Wi(GrX(d,V), L) is extension of support.

6.4. Remark. The reader will notice along the proof that when d = 1

(respectively, e = 1), the situation is somewhat particular. This is because

the map υ∗ (respectively, ι∗) on relative Picard groups modulo 2 is no longer

injective. So, some adjustments need to be made. In a first reading, it might

be a good idea to skip these special cases to more easily follow the structure

of the proof.
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Before applying Theorem 3.14, we first need to use dévissage to obtain a

total basis of the Witt groups of GrX(d,V) with support in GrX(d,V1), from

a total basis of the Witt groups of GrX(d,V1). Let (ιZ)∗ be the push-forward

along ι from the Witt groups of Z to the Witt groups with support in Z. We

therefore have e ◦(ιZ)∗ = ι∗, where e is the extension of support from Z to the

whole GrX(d,V).
6.5. Lemma. Assume e ≥ 2 (and recall Convention 6.2). The elements

(ιZ)∗
(
φd,e−1(Λ

′′)
)

with Λ′′ even (d, e− 1)-diagram

form a total basis of the Witt groups of GrX(d,V) with support in Z =

GrX(d,V1).

Proof. Since e ≥ 2 the map ι∗ : PicX(GrX(d,V))/2 → PicX(GrX(d,V1))/2

is an isomorphism (see Remark 5.6). We can therefore apply [7, Corollary 6.16]

with P = PicX(GrX(d,V)), using that the φd,e−1(Λ
′′) form a total basis of

the Witt groups of GrX(d,V1) by the induction assumption. �
When e = 1, the situation is slightly different. Since GrX(d,V1) = X, the

map ι∗ is no longer injective on Picard groups modulo 2, and there are two es-

sentially different lax push-forwards. Indeed, in that case PicX(GrX(d,V))/2
= Z/2 ·Δd and PicX(X)/2 = 1. Observe the convenient PicX(GrX(d,V))/2
= {Δd

d , Δ
d+1
d }.

6.6. Definition. Assume e = 1 and therefore GrX(d,V1) = X. Let Ld

(respectively, Ld+1) be a line bundle on GrX(d,V) such that [Ld] = Δd
d ∈

PicX(GrX(d,V))/2 (respectively, [Ld+1] = Δd+1
d ). Let δd (respectively, δd+1)

be a lax push-forward of the unit form 1X to W∗
X(GrX(d,V), Ld) (respectively,

to W∗
X(GrX(d,V), Ld+1)) along ι : X ↪→ GrX(d,V).

6.7. Lemma (Analogue of Lemma 6.5 in a special case). Assume e = 1.

Then

(a) The element δd (respectively, δd+1) forms a total basis of the {Δd
d}-

part (respectively, the {Δd+1
d }-part) of the Witt groups of GrX(d,V)

with support in X = GrX(d,V1).

(b) Together, δd and δd+1 form a total basis of the Witt groups of GrX(d,V)
with support in X = GrX(d,V1).

Proof. Part (a) follows from [7, Corollary 6.15], applied to the subset P =

{Δd
d} (respectively, P = {Δd+1

d }). Part (b) follows from (a) since the union

of total bases of disjoint parts P1 and P2 forms a total basis of the part

P = P1 ∪ P2; see [7, Lemma 6.10]. Here we use PicX(GrX(d,V))/2 = {Δd
d} �

{Δd+1
d }. �
We need to track our classes φd,e(Λ) along the morphisms involved in the

long exact sequence of localization. Recall the constructions ῑ, ῡ and ∂̄ on even
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Young diagrams (Definition 2.11) and the lax-similarity equivalence relation

� (Definition 3.4).

6.8. Proposition. With the above notation (and with Convention 6.2),

we have

(a) Let Λ′ be an even Young diagram in (d×(e − 1))-frame, with d ≥ 1,

e ≥ 2. The push-forward ι∗ satisfies (see Figure 4):

ι∗(φd,e−1(Λ
′)) � φd,e(ῑ(Λ

′)) if ζ(Λ′) is even.

(b) Let Λ be an even Young diagram in (d×e)-frame, with d ≥ 2 and e ≥ 1.

The restriction morphism υ∗ satisfies (see Figure 5):

υ∗(φd,e(Λ)
)
� α∗(φd−1,e(ῡ(Λ))

)
if Λd = 0.

(c) Let Λ′′ be an even Young diagram in ((d− 1)×e)-frame, with d, e ≥ 2.

The connecting homomorphism ∂ satisfies (see Figure 6):

∂
(
α∗(φd−1,e(Λ

′′))
)
� (ιZ)∗

(
φd,e−1(∂̄(Λ

′′))
)

if Λ′′
d−1 is odd.

Proof. (a) Let Λ′ be an even (d, e − 1)-diagram such that ζ(Λ′) is even. Let

d and e be the corresponding k-tuples (Definition 2.3). By assumption we

can consider the even (d, e)-diagram ῑ(Λ′) := (Λ′
1 + 1, . . . ,Λ′

d + 1). Observe

that it has the same associated k-tuples (with respect to the (d×e)-frame).

From (14), it is then easy to see that F lX(d, e− 1; Λ′) = F lX(d, e; ῑ(Λ′)) and

that the diagram

GrX(d,V1)
ι �� GrX(d,V)

F lX(d, e− 1; Λ′)

fd,e−1;Λ′

��

F lX(d, e; ῑ(Λ′))

fd,e,ῑ(Λ′)

��

commutes. Thus, (a) follows by composition of push-forwards and by Theo-

rem 3.8.

(b) Let Λ be an even (d, e)-diagram such that Λd = 0. Let d and e be the

corresponding k-tuples (Definition 2.3). By assumption we can consider the

even (d−1, e)-diagram ῡ(Λ) := Λ|d−1,e
. We then have two Cartesian squares :

GrX(d,V)

�

UX(d,V•)� �υ�� α ��

�

GrX(d− 1,V1)

F lX(d, e; Λ)

fd,e;Λ

��

U ′� ��� ��

��

F lX(d− 1, e; ῡ(Λ))

fd−1,e;ῡ(Λ)

��

by Lemma 5.7. The equality in (b) then follows by base change on the above

two Cartesian squares (see [8, Theorem 5.5], the horizontal morphisms are

smooth, so flat, and the vertical maps are proper, including U ′ → UX(d,V•)).
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Using Remark 3.6 and Theorem 3.8, both sides of the desired equation are lax-

similar to the push-forward of the same 1U ′ ∈ W0(U ′) along U ′ → UX(d,V•).

(c) Let Λ′′ be an even (d − 1, e)-diagram such that Λ′′
d−1 is odd. Let d

and e be the corresponding k-tuples (Definition 2.3). By assumption, we can

consider the even (d, e− 1)-diagram

∂̄(Λ′′) := (Λ′′
1 − 1, . . . ,Λ′′

d−1 − 1, 0) .

The key tool here is [6, Theorem 2.6] which allows us to compute ∂ geo-

metrically, as the pull-back to the exceptional fiber along α̃ ◦ ι̃ : EX(d,V•)→
GrX(d−1,V1) followed by the push-forward along π̃ : EX(d,V•) → GrX(d,V1),

as long as the twist of the Witt class under consideration satisfies the assump-

tions of [6, Theorem 2.6].

Here, the twist Δ
t(Λ′′)
d−1 of φd−1,e(Λ

′′) is given by t(Λ′′) = [d+1] ∈ Z/2. Using

Diagram (29) and Equation (32), one can easily check that this is the twist

for which [6, Theorem 2.6] applies. By Lemma 5.8, we have the right-hand

Cartesian square in the following commutative diagram :

GrX(d,V1) EX(d,V•)
π̃�� α̃ι̃ ��

�

GrX(d− 1,V1)

F lX(d, e− 1; ∂̄(Λ′′))

fd,e−1;∂̄(Λ′′)

��

F ′

��

π′
�� �� F lX(d− 1, e; Λ′′) .

fd−1,e;Λ′′

��

We can now compute ∂(α∗(φd−1,e(Λ
′′))) by starting with the unit form 1 in

the lower right corner, pushing-forward along fd−1,e;Λ′′ , pulling back along α̃ι̃

and then pushing forward along π̃. By base-change on the right-hand square,

this class ∂(α∗(φd−1,e(Λ
′′))) is also the (lax) push-forward of the unit form

on F ′ along π′ and then along fd,e−1;∂̄(Λ′′). The key point is to check that π′
∗

preserves the unit form, up to lax-similitude. By Lemma 5.8, we know that

π′ is either an isomorphism or a blow-up along a closed regular immersion of

odd codimension. In both cases π′
∗(1) � 1 by Proposition 3.15 and we get

the result. �
6.9. Proposition (Analogue of Proposition 6.8 in special cases). When

e = 1, the push-forward ι∗ : W0(X,OX) → Wd(GrX(d,V), Ld+1) satisfies

(38) ι∗(1X) = e(δd+1) � φd,1([d× 1]).

When d = 1, the restriction morphism υ∗ satisfies

(39) υ∗(φ1,e(/�)) � α∗(1X).

When e = 1 and d ≥ 2, the connecting homomorphism of the localization

sequence with twist Ld satisfies

(40) ∂
(
α∗(φd−1,1([(d− 1)× e]))

)
� δd .
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When e = d = 1, the connecting homomorphism of the localization sequence

with twist Ld = L1 satisfies

(41) ∂
(
α∗(1X)

)
� δ1 .

Proof. The proof is entirely analogous to the one of Proposition 6.8, so we

leave the details to the reader. �
We now apply localization, using Theorem 3.14, in which a part P of the

relative Picard group modulo 2 needs to be specified. Again, there is a general

case, when d ≥ 2, and a particular case where d = 1.

Case d, e ≥ 2. We choose P to be the whole PicX(GrX(d,V))/2. Note that we

indeed have υ∗ : PicX(GrX(d,V)/2 → PicX(UX(d,V•))/2 injective by (29).

By induction and by Lemma 6.5, the φd,e−1(Λ
′), Λ′ even, form a total basis

of the Witt groups of GrX(d,V) with support in GrX(d,V1). By induction,

we also know that the φd−1,e(Λ
′′), Λ′′ even, form a total basis of the Witt

groups of GrX(d−1,V1). Homotopy invariance and [7, Corollary 6.13] ensure

that the α∗(φd−1,e(Λ
′′)) form a total basis of the Witt groups of UX(d,V•).

The correspondence of Propositions 6.8 and 2.12 then show that assumptions

(a), (b) and (c) of Theorem 3.14 are satisfied when choosing the following

collections of Witt classes :

I=
{
even Young (d, e−1)-diagrams

Λ′ such that ζ(Λ′) is even

}
�
ῑ

��
{
even Young (d, e)-diagrams

Λ such that Λd > 0

}
,

vΛ′ =(ιZ)∗(φd,e−1(Λ
′)) and w′

Λ′ = φd,e(ῑ(Λ
′)) � e(vΛ′) for all Λ′ ∈ I,

J =

{
even Young (d, e)-diagrams

Λ such that Λd = 0

}
�
ῡ

��
{
even Young (d−1, e)-diagrams

Λ′′ such that Λ′′
d−1 is even

}
,

wΛ = φd,e(Λ) and u′
Λ = α∗(φd−1,e(ῡ(Λ))) � υ∗(wΛ) for all Λ ∈ J,

K=

{
even Young (d−1, e)-diagrams

Λ′′ such that Λ′′
d−1 is odd

}
�
∂̄

��
{
even Young (d, e−1)-diagrams

Λ′ such that ζ(Λ′) is odd

}
,

uΛ′′ = α∗(φd−1,e(Λ
′′)) and v′Λ′′ = (ιZ)∗(φd,e−1(∂̄(Λ

′′))) � ∂(uΛ′′)

for all Λ′′ ∈ K.

We therefore conclude by part (4) of Theorem 3.14 that we have a total basis

{φd,e(Λ)}Λ indexed by Λ in {Λ even with Λd = 0} � {Λ even with Λd > 0},
i.e. by all even Young diagrams in (d×e)-frame. This is the result.
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Case d ≥ 2, e = 1. The proof is the same as in the case d, e ≥ 2, except that

Proposition 6.9 is used instead of Proposition 6.8. We take (see Figure 10)

I = {�} , v� = δd+1, w′
� = φd,1([d× 1]) � e(v�),

J =
{
/�
}
, w/� = φd,1(/�), u′

/� = α∗(φd−1,1(/�)) � υ∗(w/�),

K = {�} , u� = α∗(φd−1,1(/�)), v′� = δd � ∂(u/�).

�

�

�

�

Gr(d,Vd+1) XX Gr(d− 1,Vd)

ῡ ∂̄ῑ

Figure 10. Image of the diagrams by the morphisms ῑ, ῡ

and ∂̄ when d ≥ 2 and e = 1. No arrow means the corre-

sponding generator is mapped to zero.

Case d = 1, e ≥ 2. In that case, GrX(d−1,V1) = GrX(0,V1) = X, so we can

no longer choose P to be the whole relative Picard group modulo 2 because

injectivity of υ∗ would not hold (see Remark 5.6). We therefore first choose

P = P1 := {Δd+1
d } = {1} and take (see the P1-part of Figure 11)

I = {[1× (e− 1)]} , v[1×(e−1)] = (ιZ)∗(φ1,e−1([1× (e− 1)])),

w′
[1×(e−1)] = φ1,e([1× e]) � e(v[1×(e−1)]),

J =
{
/�
}
, w/� = φ1,e(/�),

u′
/� = α∗(1X) � υ∗(w/�),

K = ∅.

As in previous cases, by part (a) of Proposition 6.8, by equation (39) and by

induction, using Theorem 3.14, we get that φ1,e([1 × e]) and φ1,e(/�) form a

basis of the {1}-part of the Witt groups of GrX(1,V).
We then choose P = P2 := {Δd}, and take (see the P2-part of Figure 11)

I = J = ∅,
K = {�} , u� = α∗(1X), v′� = (ιZ)∗(φ1,e(/�)) � ∂(u�).
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By Theorem 3.14 using (39), we obtain that the empty set is a basis of the

{Δd}-part of the Witt groups of GrX(1,V).
Putting together both bases (one of which is empty), we obtain a ba-

sis of the Witt groups of GrX(d,V) by [7, Lemma 6.10], since P1 � P2 =

PicX(GrX(1,V)). This basis contains exactly the only two generators cor-

responding to even diagrams of size (1, e), i.e. /� and [1 × e]; see Figure 11.

Gr(1,Ve)Gr(1,Ve) Gr(1,Ve+1) X

�

/�
P1-
part

P2-
part

ῡ ∂̄ῑ

Figure 11. Image of the diagrams by the morphisms ῑ, ῡ

and ∂̄ when d = 1 and e ≥ 2. No arrow means the corre-

sponding generator is mapped to zero.

Case d = e = 1. It works as in the case d = 1, e ≥ 2 except that

(ιZ)∗(φ1,e−1(/�)) is replaced by δ1 and that (ιZ)∗(φ1,e([1 × 1])) is replaced

by δ0; see Figure 12. Note that, as announced, this case does not use any

induction assumption. This completes the induction and therefore the proof

of the main Theorem 6.1. �

/�

�

/�

�

/�

�

Gr(1,V2)X XX

P1-
part

P2-
part

ῡ ∂̄ῑ

Figure 12. Image of the diagrams by the morphisms ῑ, ῡ

and ∂̄ when d = e = 1. No arrow means the corresponding

generator is mapped to zero.

7. Corollaries and examples

Here is how to deduce a more classical result on Witt groups that does

not involve “total” concepts. Recall that π is the structural morphism of
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GrX(d,V) and that Td is its tautological bundle. Also recall that the generator

φd,e(Λ) lives in W|Λ| (GrX(d,V), LΛ

)
where |Λ| is the area of Λ. Any line

bundle on GrX(d,V) is, up to isomorphism, of the form π∗K ⊗ det(Td)⊗l,

for some line bundle K on X and some l ∈ Z. A diagram Λ is such that

[LΛ] = [π∗K ⊗ det(Td)⊗l] ∈ PicX(GrX(d,V))/2 if and only if t(Λ) = l ∈ Z/2,

where t(Λ) is the half-perimeter of Λ.

7.1. Corollary. Let K be a line bundle on X and let l be an integer. For

each even (d, e)-diagram Λ such that l = t(Λ) ∈ Z/2, choose a line bundle NΛ

over GrX(d,V) and an isomorphism N⊗2
Λ ⊗ π∗(K ⊗ det(V)⊗−ρ(Λ)) ⊗ LΛ

∼→
π∗(K)⊗ det(Td)l. Then the morphism of W0(X,OX)-modules⊕
Λ even s. t.
t(Λ)=l∈Z/2

Wk−|Λ| (X,K⊗det(V)⊗−ρ(Λ)
) ∼→ Wk

(
GrX(d,V), π∗(K)⊗det(Td)⊗l

)

sending (xΛ) to
∑

xΛ·φd,e(Λ) (notation of Definition 3.10) is an isomorphism.

Proof. Apply Theorem 3.12 to the total basis formed by the φd,e(Λ). �
7.2. Corollary. Let d′ (respectively, e′) be the integral part of d/2 (respec-

tively, e/2) and consider the binomial coefficient
(
a+b
a

)
= (a+b)!

a!b! . The cardinal

of a total basis of the Witt groups of GrX(d,V) over X is 2
(
d′+e′

e′

)
. If we

assume moreover that Wi(X,K) = 0 for i �≡ 0 mod 4 or [K] �= [OX ] ∈
Pic(X)/2, for instance for X local (e.g. a field), then, as a module over

W0(X,OX),

• the classical Witt group of symmetric forms W0(GrX(d,V),O) has

rank
(
d′+e′

e′

)
,

• the classical Witt group of antisymmetric forms W2(GrX(d,V),O) is

zero,

• the Witt groups W1(GrX(d,V), L) and W3(GrX(d,V), L) are zero

when [L] = Δd ∈ PicX(GrX(d,V))/2.
Proof. Let “4-block” mean “2 × 2 square”. Every even Young diagram Λ

is either

(a) a union of 4-blocks in which case φ(Λ) counts in W0(GrX(d,V),O),

(b) a single row plus 4-blocks (e even) in which case φ(Λ) counts in

We(GrX(d,V), LΛ),

(c) a single column plus 4-blocks (d even) in which case φ(Λ) counts in

Wd(GrX(d,V), LΛ),

(d) a single row and a single column plus 4-blocks (d and e odd) in which

case φ(Λ) counts in Wd+e−1(GrX(d,V),O).

All possibilities (a)–(d) are exclusive and can be enumerated easily by count-

ing the diagrams of 4-blocks, which amounts to counting the usual Young

diagrams in (d′×e′)-frame. We get
(
d′+e′

e′

)
elements in case (a), and the other
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results depend on the parities of d and e but are also very easy to figure out

in each case. �
7.3. Corollary. The connecting homomorphism ∂ is zero for all line bun-

dles L (and thus the long exact sequence (37) decomposes as split short exact

sequences as for Chow groups) if and only if both d and e are even.

Proof. Looking back at the proof of the main theorem, and at (18) (or

Figure 6), we see that ∂ is zero if and only if there is no even (d − 1, e)-

diagram Λ′′ such that Λ′′
d−1 is odd. This implies that e is even (otherwise Λ′′ =

[(d− 1)× e] would be such an even diagram) and that d− 1 is odd (otherwise

Λ′′ = (1, . . . , 1) would be such an even diagram). Conversely, assume e even

and the existence of an even (d − 1, e)-diagram Λ′′ such that Λ′′
d−1 is odd.

Then ek is odd (since e = Λ′′
d−1 + ek is even), hence all ei are odd since Λ′′

is an even diagram. In particular, e1 is odd, hence e1 > 0 and therefore d1
is even. This implies that d− 1 = dk = (dk − dk−1) + . . .+ (d2 − d1) + d1 is

even, i.e. d is odd, as was to be shown. �
7.4. Notation. For d, e � 1, we write GX(d, e) for the split Grassmannian

GX(d, e) = GrX(d,Od+e
X ) .

7.5. Example. Figure 13 shows how the different generators are mapped

to each other, up to lax-similitude, by ι∗, υ∗ and ∂ in the long exact se-

quence (37) for G(3, 3). We use dévissage (respectively, homotopy invari-

ance) to identify the generators of the Witt groups of G(3, 2) (respectively, of

G(2, 3)) with generators of the Witt groups of G(3, 3) with support on G(3, 2)

(respectively, of the open complement of G(3, 2)).

7.6. Example. Figures 14, 15 and 16 give the even Young diagrams in

(d×e)-frame and the corresponding shifts in Z/4 and twists Δd or O for the

Grassmannians G(4, 4), G(4, 5) and G(5, 5).

We conclude with a few comments.

7.7. Remark. As mentioned in Remark 6.3, we could have considered a

larger set of elements φd,e(Λ) using Remark 4.1 instead of assuming Λ even.

This larger set is also stable by applying ι∗, υ
∗ and ∂. Some of these extra

elements are then easily seen to be zero from the exact sequence, but some of

them are non-zero.

7.8. Remark. Part of the multiplicative structure on Witt groups can

be computed at each induction step using the projection formula. Unfortu-

nately, this is not enough for the whole computation. Despite the results for

the Grothendieck and the Chow rings using the basis of Schubert cells, it

is unclear to the authors what kind of Littlewood-Richardson type rule one

should expect.
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ῡῑ ∂̄

G(3, 2) G(3, 3) G(2, 3) G(3, 2)

Figure 13. Maps ῑ, ῡ and ∂̄ on diagrams, corresponding to

the maps ι∗, υ
∗ and ∂ on generators (no arrow means mapped

to zero).

Figure 14. Diagrams of generators for G(4, 4): first row in

shift 0 and twist O, second row in shift 0 and twist Δd.

Figure 15. Diagrams of generators for G(4, 5): first row in

shift 0 and twist O, second row in shift 0 and twist Δd.
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Figure 16. Diagrams of generators for G(5, 5): first row in

shift 0 and twist O, second row in shift 1 and twist Δd.

Note however that all generators φd,e(Λ) are nilpotent except for Λ =
/�. This can be checked using homotopy invariance and a discussion on the

supports or simply the fact that these Witt classes are generically trivial.

7.9. Remark. Although we do not need it here, it is possible to show that,

for V = Od+e
X , the isomorphism G(d, e) = Gr(d,V) � Gr(e,V∨) = G(e, d)

sends φd,e(Λ) to φe,d(Λ
∨), up to lax-similitude of course, where Λ∨ is the dual

partition.
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Berthelot, A. Grothendieck et L. Illusie. Springer Lecture Notes in Mathematics, Vol.
225. MR0354655 (50:7133)

3. P. Balmer, Triangular Witt groups Part I: The 12-term localization exact sequence,
K-Theory 4 (2000), no. 19, 311–363. MR1763933 (2002h:19002)

4. , Triangular Witt groups Part II: From usual to derived, Math. Z. 236 (2001),
no. 2, 351–382. MR1815833 (2002h:19003)

5. , Products of degenerate quadratic forms, Compositio Mathematica 6 (2005),
no. 141, 1374–1404. MR2188441 (2006k:11059)

6. P. Balmer and B. Calmès, Geometric description of the connecting homomorphism for
Witt groups, Doc. Math. 14 (2009), 525–550. MR2565903 (2010j:19009)

7. , Bases of total Witt groups and lax-similitude, J. Algebra Appl., to appear.
8. B. Calmès and J. Hornbostel, Push-forwards for Witt groups of schemes, Comment.

Math. Helv. 86 (2011), no. 2, 437–468. MR2775136 (2012e:19007)
9. M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique,
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