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Abstract. We define transfer morphisms (also called push-forwards or norm

morphisms) between coherent Witt groups of schemes along proper morphisms

and establish the base change and projection formulae for those. We then use
this to define the category of Witt motives. We also deduce a dévissage theo-

rem. Finally, we obtain some results about Witt groups of cellular varieties.
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Introduction

Transfer maps exist for many cohomological theories over schemes, e.g. for K-
theory, (higher) Chow groups and algebraic cobordism. They are undoubtedly a
useful tool for understanding and computing those cohomology theories. This arti-
cle is about the construction of transfer maps for Witt groups (as defined by Balmer
[3] in the framework of triangulated categories). To illustrate the importance of
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transfers, we prove a dévissage theorem for Witt groups of closed embeddings.
This is then applied to obtain partial results about Witt groups of varieties with
a given cellular decomposition. Besides the classical case of finite field extensions,
some special cases of transfers for Witt groups have been treated in [9], [29] and
[20].

Although similar to some extent to the case ofK0, the situation for Witt groups is
more complicated. Witt groups of schemes (equipped with dualizing complexes) are
the first example of a “non-orientable cohomology theory” for which a reasonable
theory of transfer maps with respect to proper morphisms may be established. For
coherent Witt groups, we prove (see Theorems 2.20, 2.17 and 2.16)

Theorem 0.1. Let f : X → Y be a proper map of relative dimension d between
smooth Noetherian schemes of finite Krull dimension over a regular connected base
and L a line bundle on Y . Then we can construct a transfer map of degree −d

f∗ : W ∗+d(X, f∗L⊗OX
ωX) →W ∗(Y, L⊗OY

ωY )

which satisfies the projection formula and the base change formula with respect to
a flat morphism.

This is a consequence of a more general result (see Theorem 2.15). Observe
the twists and shifts that show up. The construction of the transfer map is more
tricky than one might expect as one has to carefully keep track of the dualities
and isomorphisms between objects and their biduals involved as well as all kind of
compatibilities with the triangulated structure and the monoidal structure. This is
carried out in Section 1.

We show that the natural isomorphism from the identity to the bidual and
various other isomorphisms can be constructed from an internal Hom adjoint to
some tensor product. We also show that this and other constructions related to
the adjointness of Lf∗, Rf∗ and f ! can be carried out in a compatible way, These
verifications are rather long, but we see no way of avoiding them. We have presented
them in a general framework. As long as possible - namely the entire section 1 - we
stay in this general framework rather than appealing to known results or arguments
related to varieties, dualizing complexes and Witt groups. This has at least two
advantages. First, it emphasizes which of the results are formal and which depend
on the special case of Witt groups and varieties. Second, Section 1 may be applied
to other fields of mathematics, for instance to other “motivic” categories or to stable
homotopy theory.

This general setting can be summarized as follows.
Let us consider a collection of symmetric monoidal triangulated
categories, each equipped with an internal Hom adjoint to the ten-
sor product, and some exact monoidal functors f∗ between them
with reasonable composition properties. If these f∗ have right ad-
joints f∗ (as usual functors), which themselves have right adjoints
f !, then we can trivially define natural transfers (induced by f∗)
between Witt groups associated to some dualities defined by the
internal Homs.

A careful reader might not be satisfied with such a sentence, and this is why we
have given full details and proofs in Section 1. Let us make a few remarks.

(1) When defining “duality preserving functors” that induce morphisms on
Witt groups, and proving the desired formulas, the main problem is to show
that some diagrams are commutative (see for example [7, Definition 2.6]).
Most of the articles on the subject usually deal with concrete situations,
where the objects are complexes in a derived category, and checking the
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commutativity of those diagrams reduces to checking signs that appear,
depending on the position in the complex. When the situation becomes
too involved, this can generate “sign” mistakes. We completely avoid this
problem here. We start with very few abstract triangulated functors (so of
course, ultimately, “signs” in derived categories are hidden there), such as
an internal tensor product and a functor called f∗. We assume that those
functors have adjoints as usual functors (for example the internal Hom and
f∗), and we make the adjoints triangulated in such a way that the required
diagrams are commutative. A corollary of this is that whenever one of our
references contains a sign mistake, this has no influence in our work.

(2) In our setting, each diagram could be obtained in some empirical way, by
fiddling with the previous ones. However, since this would be difficult to
follow for a reader, we have tried to obtain as many diagrams as possible
in a systematical way, using ad nauseam an elementary lemma (namely,
Lemma 1.7) and some sophisticated versions of it (Theorem 1.9, Lemmas
1.19 and 1.40 and Theorems 1.41 and 1.55). We do not claim any deep
innovation in the notions introduced to do so: they are formal, and are just
there to simplify and unify the exposition (see for example Definition 1.49).

Reading this first section might seem very unpleasant at first glance. Don’t
get discouraged: writing it and checking all the details one is tempted to believe
anyway was even more unpleasant. Of course, you can trust us (in the spirit of
[11, pp. 117-119]) and skip this section. If you don’t, you will find a survey of its
subsections at the beginning of it.

In Section 2, applying the abstract framework of Section 1 to the case of schemes
by using results from the theory of duality (Grothendieck, Hartshorne, Deligne,
Verdier et al.), we obtain our main results, in particular Theorem 0.1. This al-
lows us in particular to construct the category of Witt motives (see Section 2.3)
which are slightly more complicated but similar in spirit to Panin’s K0-motives
(and Grothendieck-Manin’s classical motives). We also explain the usual struc-
tures (graph functor, pseudoabelian completion, tensor product and duality) on
this category of Witt motives.

In the third section, we use the transfers and the base change theorem to prove
a dévissage theorem (Theorem 3.1) for Witt groups. As a corollary, for Z a closed
subscheme of X we obtain a localization exact sequence (Corollary 3.4)

· · · ∂→Wn(Z, f !L)
f∗→Wn(X,L)

j∗→Wn(X − Z, j∗L) ∂→Wn+1(Z, f !L) → · · ·

which is useful for computations, of course.

The last section is devoted to Witt groups of smooth projective varieties equipped
with a cellular decomposition.

In the appendix, we provide a choice of signs so that the derived functors used
in Section 2 are compatible with the axioms required in Section 1. This choice of
signs is compatible with the various sign conditions used by Balmer [3], [4], Gille
[7] and Gille-Nenashev [10].

We believe the transfer morphisms constructed in this paper will have other ap-
plications than the dévissage theorem provided here. In particular, we have become
interested in the problem when trying to compute the Witt groups of projective
homogeneous varieties by adapting the motivic and equivariant methods of Panin
in K-theory (see [22]) in which he reduces the problem to well-known computations
of Grothendieck groups of the categories of representations of split algebraic groups.
We consider this paper (especially Section 2.3) as part of this attempt, even though
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much more has to be done to complete it (for example extending the results of this
article to the equivariant setting).

This paper essentially extends the results of Section 4 and the appendix of the
preprint [6], except the short section on dévissage (of which a sketch was provided
in an update in 2005) and on cellular varieties. We thank Bruno Kahn for discus-
sions about and around Grothendieck-Verdier duality, and Stefan Gille for useful
comments on earlier drafts.

1. Duality formalism and adjunctions

In this section, we obtain formal consequences of adjunctions of the type ⊗-Hom,
f∗-f∗ and f∗-f ! in tensor-triangulated categories that are useful for Balmer’s theory
of higher Witt groups. Some people would probably call this the formalism of the
five functors in triangulated categories. Our philosophy is to exhibit a minimal
axiomatic setting which can be verified without too much work in the examples of
interest and from which everything can be deduced in a formal way. The example of
a triangulated category to keep in mind for this article is the derived categoryDb

c(X)
of bounded complexes of OX -modules with coherent cohomology on a separated
Noetherian scheme X.

Here is a survey of the different subsections of this section.

• Section 1.1 explains the general notation.
• Section 1.2 recalls elementary properties of adjunctions and proves useful

lemmas about it.
• Section 1.3 explains how to deal with bifunctors that are adjoint when we

fix one variable (such as the tensor product and the internal Hom), and
translates a few lemmas on adjunction in this context.

• Section 1.4 introduces suspended categories, suspended functors and sus-
pended bifunctors.

• Section 1.5 explains how suspended functors can form an adjoint couple,
and how one can carry a suspended structure from defined for one member
of a couple to the other one; it includes the case of bifunctors.

• Section 1.6 introduces the main concept of duality on a category, duality
preserving pairs and functors, in a uniform way for usual functors or for
suspended functors, so that we can more or less forget about the suspension
in the rest of the proofs (all methods to obtain new morphisms will then
carry the extra suspension structure without any further problem).

• Sections 1.7 and 1.8 show that the dualities constructed with the internal
Hom are indeed dualities in the sense of the previous section.

• Section 1.9 is the core of the abstract part. We obtain the morphisms of
functors and the properties we are interested in by using the lemmas on
adjunction. This includes in particular the definition of the push-forward
(Theorem 1.75).

• Section 1.10 recalls properties related to the associativity of the tensor
product and prepares what is needed for the proof of the projection formula.

• Section 1.11 recalls compatibilities with the unit of the monoidal structure,
which are useful in applications to prove that some morphisms of functors
are isomorphisms.

• Section 1.12 proves the projection formula 1.92.
• Section 1.13 shows that the push-forward respects composition.
• Section 1.14 proves the base change theorem 1.101.
• Section 1.15 restates the main theorems using f ! of the unit objects which

will be useful for applications.
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We have presented some aspects in slightly greater generality and provided some
more results than we actually need for our applications in section 2 for possible
future applications (e.g., other motivic categories or the stable homotopy category).

1.1. Notations and conventions. The opposite category of a category C is de-
noted by Co.

When F and G are functors with same source and target, we denote a morphism
of functors between them as t : F → G. When s : G → H is another one,
their composition is denoted by s ◦ t. When F1, F2 : C → D, G1, G2 : D → E ,
f : F1 → F2 and g : G1 → G2, we denote by gf the morphism of functors defined
by (fg)A = G2(fA)◦gF1(A) = gF2(A) ◦G1(fA) on any object A. When F1 = F2 = F
and f = idF (resp. G1 = G2 = G and g = idG), we usually use the notation
gF (resp. Gf). With this convention, gf = G2f ◦ gF1 = gF2 ◦ G1f . When a
commutative diagram is obtained by this equality or other properties immediate
from the definition of a morphism of functors, we just put an mf label on it and
avoid further justification. To save space, it may happen that when labeling maps
in diagrams, we drop the functors from the notation, and just keep the important
part, that is the morphism of functors (thus FgH might be reduced to g). Many of
the commutative diagrams in the article will be labeled by a symbol in a box (letters
or numbers, such as in H or 3 ). When they are used in another commutative
diagram, eventually after applying a functor to them, we just label them with the
same symbol, so that the reader recognizes them, but without further comment.

1.2. Useful properties of adjunctions. This section is devoted to easy facts
and theorems about adjunctions, that are repeatedly used throughout the first part
of this article. All these facts are obvious, and we only prove the ones that are
not completely classical. A good reference for the background on categories and
adjunctions as discussed here is [14].

Definition 1.1. An adjoint couple (L,R) is the data consisting of two functors
L : C → D and R : D → C and equivalently:

• a bijection Hom(LA,B) ' Hom(A,RB), functorial in A ∈ C and B ∈ D,
or

• two morphism of functors η : IdC → RL and ε : LR → IdD, called respec-
tively unit and counit, such that the resulting compositions R

ηR→ RLR
Rε→ R

and L
Lη→ LRL

εL→ L are identities.
In the couple, L is called the left adjoint and R the right adjoint. When we want
to specify the unit and counit of the couple and the categories involved, we say
(L,R, η, ε) is an adjoint couple from C to D.

When the commutativity of a diagram follows by one of the above compositions
giving the identity, we label it adj .

Remark 1.2. Adjunctions between functors that are contravariant can be considered
in two different ways, by taking the opposite category of the source of L or R. This
does not lead to the same notion, essentially because if (L,R) is an adjoint couple,
then (Ro, Lo) is an adjoint couple (instead of (Lo, Ro)). For this reason, we only
use covariant functors in adjoint couples.

Lemma 1.3. Let (L,R, η, ε) and (L′, R′, η′, ε′) be two adjoint couples between the
same categories C and D, and let l : L→ L′ (resp. r : R→ R′) be an isomorphism.
Then, there is a unique isomorphism r : R → R′ (resp. l : L → L′) such that
η′ = rl ◦ η and ε′ = ε ◦ l−1r−1.

Proof: The morphism r is given by the composition R′ε ◦R′l−1R ◦ η′R and its
inverse by the composition Rε′ ◦RlR′ ◦ ηR′. 2
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Corollary 1.4. If a functor has a right (resp. left) adjoint, this adjoint is unique
up to unique isomorphism.

Lemma 1.5. An equivalence of categories is an adjoint couple (F,G, a, b) for which
the unit and counit are isomorphisms. In particular, (G,F, b, a) is also an adjoint
couple.

Lemma 1.6. Let (L,R, η, ε) (resp. (L′, R′, η′, ε′)) be an adjoint couple from C to
D (resp. from D to E). Then (L′L,RR′, Rη′L ◦ η, ε′ ◦ L′εR′) is an adjoint couple
from C to E.

We now turn to a series of less standard results, nevertheless very easy.

Lemma 1.7. Let H, H ′, J1, K1, J2 and K2 be functors with sources and targets
as on the following diagram.

C1

K1

��

H // C2

K2

��
C′1

J1

OO

H′
// C′2

J2

OO

Assume (Ji,Ki, ηi, εi), i = 1, 2 are adjoint couples. Let a : J2H
′ → HJ1 (resp.

b : H ′K1 → K2H) be a morphism of functors. Then there exists a unique morphism
of functors b : H ′K1 → K2H (resp. a : J2H

′ → HJ1) such that the diagrams

J2H
′K1

aK1

��

J2b //

H

J2K2H

η2H

��
HJ1K1

Hε1

// H

and

H ′

η2H
′

��

H′η1 //

H′

H ′K1J1

bJ1

��
K2J2H

′
K2a

// K2HJ1

are commutative. Furthermore, given two morphisms of functors a and b, the com-
mutativity of one diagram is equivalent to the commutativity of the other one.

Proof: We only prove that the existence of a implies the uniqueness and exis-
tence of b, the proof of the other case is similar. Assume that b exists and makes
the diagrams commutative. The commutative diagram

H ′K1

η2H
′K1

��

H′η1K1//

H′

H ′K1J1K1
H′K1ε1//

��
mf

H ′K1

b

��
K2J2H

′K1 K2aK1

// K2HJ1K1
K2Hε1

// K2H

in which the upper horizontal composition is the identity of H ′K1 (by adjunction)
shows that b has to be given by the composition

H ′K1

η2H
′K1 // K2J2H

′K1
K2aK1 // K2HJ1K1

K2Hε1 // K2H .

This proves uniqueness. Now let b be given by the above composition. The com-
mutative diagram

J2H
′K1

//
GF ��J2b

��

OOOOOOOOOOO

OOOOOOOOOOO
J2K2J2H

′K1

��

//

mf

J2K2HJ1K1

��

//

mf

J2K2H

ε2H

��

adj

J2H
′K1 aK1

// HJ1K1
Hε1

// H
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proves H and the commutative diagram

H ′K1J1
//

GF ��bJ1

��

mf

K2J2H
′K1J1

//

mf

K2HJ1K1J1
//

adj

K2HJ1

H ′

H′η1

OO

η2H
′
// K2J2H

′

OO

K2a
// K2HJ1

OO ppppppppppp

ppppppppppp

proves H′ . The fact that the commutativity of one of the diagrams implies com-
mutativity to the other is left to the reader. 2

Lemma 1.8. Let us consider a cube of functors and morphisms of functors

• //

��?
??

? •
��?

??
?

•

;C����
���� // q

p

OO

��?
??

?

•

PX*************

*************

OO

// •

[c???????????

???????????

OO

front

• // •
��?

??
?

q

p

OO

��?
??

?
// •

[c???????????

???????????

OO

��?
??

?

•

;C����
���� // •

PX*************

*************

OO

back

that is commutative in the following sense: The morphism between the two outer
compositions of functors from p to q given by the composition of the three morphisms
of functors of the front is equal to the composition of the three morphism of functors
of the back. Assume that the vertical maps have right adjoints. Then, by Lemma
1.7 applied to the vertical squares, we obtain the following cube (the top and bottom
squares have not changed).

•

��

//

��?
??

? •
��?

??
?

•

��

;C����
���� // •

��

•

;C����
����

��?
??

?

•

;C�����������

����������� // •
front

•

��

// •

��

��?
??

?

•

��

•
��?

??
?

;C�����������

����������� // •
��?

??
?

;C����
����

•

;C����
���� // •

back

This cube is commutative (in the sense just defined).

Proof: This is straightforward, using the commutative diagrams of Lemma 1.7,
and left to the reader. 2

We now use Lemma 1.7 to prove a theorem, which doesn’t contain a lot more than
the lemma, but is stated in a convenient way for future reference in the applications
we are interested in.

Theorem 1.9. Let L, R, L′, R′, F1, G1, F2, G2 be functors whose sources and
targets are specified by the diagram

C1

G1

��

L // C2
R
oo

G2

��
C′1

F1

OO

L′ // C′2.

F2

OO

R′
oo
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We will study morphisms of functors fL, f ′L, gL, g′L, fR, f ′R, gR and g′R whose
sources and targets will be as follows:

LF1

fL //
F2L

′
f ′L

oo L′G1

g′L // G2L
gL

oo

F1R
′

f ′R // RF2
fR

oo G1R
gR //

R′G2
g′R

oo

Let us consider the following diagrams, in which the maps and their directions will
be the obvious ones induced by the eight maps above and the adjunctions accordingly
to the different cases discussed below.

F2L
′G1

L

LF1G1

F2G2L L

L′

L′

G2F2L
′

L′G1F1 G2LF1

F1R
′G2

R

RF2G2

F1G1R R

R′

R′

G1F1R
′

R′G2F2 G1RF2

G1

��

//

G1

G1RL

R′L′G1 R′G2L

L′G1R

G2

G2LR

��
L′R′G2

// G2

F1

��

//

F1

F1R
′L′

RLF1 RF2L
′

LF1R
′

F2

F2L
′R′

��
LRF2

// F2

Then
1. Let (Gi, Fi), i = 1, 2 be adjoint couples. Let gL (resp. fL) be given, then

there is a unique fL (resp. gL) such that L and L′ are commutative. Let
gR (resp. fR) be given, then there is a unique fR (resp. gR) such that R

and R′ are commutative.
1’. Let (Fi, Gi), i = 1, 2 be adjoint couples. Let g′L (resp. f ′L) be given, then

there is a unique f ′L (resp. g′L) such that L and L′ are commutative. Let
g′R (resp. f ′R) be given, then there is a unique f ′R (resp. g′R) such that R

and R′ are commutative.
2. Let (L,R) and (L′, R′) be adjoint couples. Let fL (resp. f ′R) be given, then

there is a unique f ′R (resp. fL) such that F1 and F2 are commutative.
Let g′L (resp. gR) be given, then there is a unique gR (resp. g′L) such that
G1 and G2 are commutative.

3. Assuming (Gi, Fi), i = 1, 2, (L,R) and (L′, R′) are adjoint couples, and
gL, g′L = g−1

L are given (resp. fR and f ′R = f−1
R ). By 1 and 2, we obtain

fL and gR (resp. gR and fL). We then may construct fR and f ′R (resp. gL
and g′L) which are inverse to each other.

3’. Assuming (Fi, Gi), i = 1, 2, (L,R) and (L′, R′) are adjoint couples, fL and
f ′L = f−1

L are given (resp. gR and g′R = g−1
R ). By 1’ and 2, we obtain g′L

and f ′R (resp. f ′R and g′L). We then may construct g′R and gR (resp. f ′L
and fL) which are inverse to each other.
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Proof: Points 1, 1’ and 2 are obvious translations of the previous lemma.
We only prove Point 3, since 3’ is dual to it. Let (L,R, η, ε), (L′, R′, η′, ε′) and
(Gi, Fi, ηi, εi), i = 1, 2, be the adjoint couples. Using 1 and 2, we first obtain fL
and gR, as well as the commutative diagrams L , L′ (both involving gL = (g′L)−1),
G1 and G2 (both involving g′L = (gL)−1). The morphisms of functors f ′R and fR

are respectively defined by the compositions

F1R
′ ηF1R

′
// RLF1R

′ RfLR
′
// RF2L

′R′
RF2ε

′
// RF2

and

RF2
η1RF2 // F1G1RF2

F1gRF2// F1R
′G2F2

F1R
′ε2 // F1R

′ .

We compute fR ◦ f ′R as the upper right composition of the following commutative
diagram

F1R
′

η1

��

η //

mf

RLF1R
′

��

fL //

mf

RF2L
′R′

��

ε′ //

mf

RF2

η1

��
F1G1F1R

′ //

G1

η′

$$

F1G1RLF1R
′

��

//

mf

F1G1RF2L
′R′

��

//

mf

F1G1RF2

gR

��
F1R

′G2LF1R
′

(g′L)−1=gL

��

//

L′

F1R
′G2F2L

′R′

��

//

mf

F1R
′G2F2

ε2

��
F1R

′L′G1F1R
′

ε1
// F1R

′L′R′
ε′

// F1R
′

The lower left composition in the above diagram is the identity because it appears
as the upper right composition of the commutative diagram

F1R
′ η1 //

KKKKKKKKKK

KKKKKKKKKK
F1G1F1R

′

��

η′ //

mf

F1R
′L′G1F1R

′

ε1

��

adj

F1R
′ //

PPPPPPPPPPPPP

PPPPPPPPPPPPP F1R
′L′R′

ε′

��

adj

F1R
′

.

The composition f ′R ◦ fR = id is proved in a similar way, involving the diagrams
L and G2 . 2

The reader has certainly noticed that there is a statement 2′ which we didn’t
spell out because we don’t need it.

1.3. Bifunctors and adjunctions. We have to deal with couples of bifunctors
that give adjoint couples of usual functors when one of the entries in the bifunctors
is fixed. We need to formalize how these adjunctions are functorial in this entry.
The standard example for that is the classical adjunction between tensor product
and internal Hom.

Definition 1.10. Let X be a category. We denote by MorX a category of
morphisms of X constructed as follows. The objects of MorX are morphisms
[f : A → B] from X and a morphism from [f1 : A1 → B1] to [f2 : A2 → B2] is a
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pair (a, b) of morphisms of X such that a : A2 → A1, b : B1 → B2 and

A1
f1 // B1

b

��
A2

a

OO

f2 // B2

is commutative. Morphisms are composed in the obvious way.

Sending a morphism to its target (resp. to its source) defines a functor from
MorX to X (resp. X o) denoted by PX (resp. QX ). For any F : X → C (resp.
F : X o → C), we define F̄ = FPX (resp. F̄ = FQX ).

Lemma 1.11. Let F1, F2 : X → C (resp. X o → C). Sending a morphism of
functors µ : F1 → F2 to µ̄ = µPX (resp. µ̄ = µQX ) is a one-to-one correspondence
between the morphisms of functors from F1 to F2 and the morphisms of functors
from F̄1 to F̄2.

Proof: Given µ̄, we can recover µ by defining µX , for an object X in X by the
composition

F1(X) = F̄1([idX ])
µ̄[idX ] // F̄2([idX ]) = F2(X)

We have to prove that µ satisfies the usual commutative diagrams of morphism of
functors. Let f : X → Y be a morphism in X . In MorX , we have the morphisms
(id, f) : [idX ] → [f ] and (f, id) : [idY ] → [f ]. Since µ̄ is a morphism of functors, we
have the commutative diagram

F1(X)

F1(f)

��

F̄1([idX ])

F̄1(id,f)

��

µ̄[idX ] // F̄2([idX ])

F̄2(id,f)

��

F2(X)

F2(f)

��
F1(Y )

F1(id)

F̄1([f ])
µ̄[f] // F̄2([f ]) F2(Y )

F2(id)

F1(Y ) F̄1([idY ])

F̄1(f,id)

OO

µ̄[idY ] // F̄2([idY ])

F̄2(f,id)

OO

F2(Y )

whose outer part shows what we want. It is easy to see that this defines an inverse
to µ 7→ µ̄. 2

Let C, C′ be two categories, and let L : X × C′ → C and R : X o × C → C′
be bifunctors. We define L̃ : MorX × C′ → MorX × C (resp. R̃ : MorX × C →
MorX ×C′) via the projection to MorX and the morphism MorX ×C′ L◦(PX×id)−→ C
(resp. MorX ×C R◦(QX×id)−→ C′). By a slight abuse of notation the latter morphism
will be sometimes denoted by L̄.

Definition 1.12. We say that (L,R) form an adjoint couple of bifunctors (abbre-
viated as ACB) from C′ to C with parameter in X if (L̃, R̃) is an adjoint couple in
the usual sense, with a unit and counit whose component with respect to MorX is
the identity. In particular, for any morphism f : A→ B the unit and counit yield
morphisms of functors

IdC′ → R(A,L(B,−)) L(B,R(A,−)) → IdC .

We sometimes use the notation (L(∗,−), R(∗,−)), where the ∗ is the entry in X
and write

C
L //
X C′
R

oo
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in diagrams.

Lemma 1.13. If (L,R) is an ACB, then (L(X,−), R(X,−)) is an adjoint couple
for every X in X .

Proof: Easy and left to the reader. 2

Example 1.14. Let C = C′ = X be the category of modules over a commutative
ring. The tensor product and the internal Hom form an ACB, with the usual unit
and counit.

Lemma 1.15. Let F : X ′ → X be a functor, and (L,R) be an ACB with parameter
in X . Then (L(F (∗),−), R(F (∗),−)) is again an ACB in the obvious way.

Lemma 1.16. Let (L,R) and (L′, R′) be ACBs, and let l : L→ L′ (resp. r : R→
R′) be an isomorphism of bifunctors. We define l̃ : L̃ → L̃′ (resp. r̃ : R̃ → R̃′)
as (idpMorX , l̄) (resp. (idpMorX , r̄)). Then, there exists a unique isomorphism of
bifunctors r : R → R′ (resp. l : L → L′) such that r̃ : R̃ → R̃′ and l̃ : L̃ → L̃′

induced by r and l satisfy η′ = r̃l̃ ◦ η and ε′ = ε ◦ l̃−1r̃−1, where η, η′ and ε, ε′ are
the units and counits of the ACBs.

Proof: Apply Lemma 1.3 to the functors with˜and lift the resulting isomorphism
of functors using Lemma 1.11. 2

Corollary 1.17. A right (resp. left) adjoint in an ACB is unique up to unique
isomorphism.

Lemma 1.18. Let (L,R) be an ACB from C′ to C with parameter in X and let
(F,G) be an adjoint couple from D to C′, then (L(∗, F (−)), GR(∗,−)) is an ACB
(with unit and counit given in an obvious and natural way).

Proof: Left to the reader. 2

We now give a version of Lemma 1.7 for ACBs.

Lemma 1.19. Let (J1,K1) (resp. (J2,K2)) be an ACB from C′1 to C1 (resp. C′2
to C2) with parameter in X , let H : C1 → C2 and H ′ : C′1 → C′2 be functors.
Let a : J2(∗,H ′(−)) → HJ1(∗,−) (resp. b : H ′K1(∗,−) → K2(∗,H(−))) be a
morphism of bifunctors. Then there exists a unique morphism of bifunctors b :
H ′K1(∗,−) → K2(∗,H(−)) (resp. a : J2(∗,H ′(−)) → HJ1(∗,−)) such that the
diagrams

J2(B,H ′K1(A,−))

aK1

��

J2b //

H

J2(B,K2(A,H(−)))

η2H

��
HJ1(B,K1(A,−))

Hε1

// H

and

H ′

η2H
′

��

H′η1 //

H′

H ′K1(A, J1(B,−))

bJ1

��
K2(A, J2(B,H ′(−)))

K2a
// K2(A,HJ1(B,−))

are commutative for every morphism f : A→ B in X . The maps ηi and εi are the
components of the unit and counit of the ACBs to C′i and to Ci.
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Proof: We apply Lemma 1.7 to the functors in the diagram

MorX × C1

K̃1

��

Id×H //MorX × C2

K̃2

��
MorX × C′1

J̃1

OO

Id×H′
//MorX × C′2

J̃2

OO

and to the morphism of functors

ã : J̃2(Id×H ′) → (Id×H)J̃1

or
b̃ : (Id×H)K̃1 → K̃2(Id×H ′)

induced by a or b. Then we use Lemma 1.11 to lift the morphism of functor obtained
(between functors with˜) to a morphism of (bi)functors. 2

1.4. Suspended and triangulated categories. We recall here what we need
about triangulated categories. The reason why we use the concept of a suspended
category is because all the commutative diagrams that have to be satisfied when we
deal with Witt groups are just related to the suspension, and not to the exactness
of the functors involved. So when we need to prove the commutativity of those
diagrams, we forget about the exactness of our functors, and just think of them as
suspended functors, in the sense described below.

Definition 1.20. A suspended category is an additive category C together with an
adjoint couple (T, T−1) from C to C which is an equivalence of category (the unit
and counit are isomorphisms).

Remark 1.21. We assume furthermore in all what follows that TT−1 and T−1T are
the identity of C and that the unit and counit are also the identity. This assumption
is not true in some suspended (triangulated) categories arising in stable homotopy
theory. Nevertheless, it simplifies the exposition which is already sufficiently tech-
nical. When working in an example where this assumption does not hold, it is of
course possible to make the modifications to get this even more general case.

Between suspended categories (C, TC) and (D, TD), we use suspended functors:

Definition 1.22. A suspended functor (F, f) from C to D is a functor F together
with an isomorphism of functors f : FTC → TDF . We sometimes forget about f in
the notation.

Without the assumption in Remark 1.21, we would need another isomorphism
f ′ : FT−1 → T−1F and compatibility diagrams analogous to the ones in Lemma
1.7. Then, we would have to carry those compatibilities in our constructions. Again,
this would not be a problem, just making things even more tedious.

Suspended functors can be composed in an obvious way, and (T, idT 2) and
(T−1, idId) are suspended endofunctors of C that we call T and T−1 for short.

Definition 1.23. To a suspended functor F , one can associate “shifted” ones,
composing F by T or T−1 several times on either sides.

Definition 1.24. The opposite suspended category Co of a suspended category C
is given the suspension (T−1

C )o.

With this convention, we can deal with contravariant suspended functors in two
different ways (depending where we put the ”op”), and this yields essentially the
same thing, using the definition of shifted suspended functors.



WITT MOTIVES, TRANSFERS AND DÉVISSAGE 13

Definition 1.25. A morphism of suspended functors h : (F, f) → (G, g) is a
morphism of functors h : F → G such that the diagram

FT

hT

��

f //

sus

TF

Th

��
GT g

// TG

is commutative.

Lemma 1.26. The composition of two morphisms of suspended functors yields a
morphism of suspended functors.

Proof: Straightforward. 2

A triangulated category is a suspended category with the choice of some exact
triangles, satisfying some axioms. This can be found in text books as [28](see also
the nice introduction in [3, Section 1]). We include the enriched octahedron axiom
in the list of required axioms as it is suitable to deal with Witt groups, as explained
in loc. cit.

Definition 1.27. (see for example [10, § 1.1]) Let (F, f) : C → D be a covariant
(resp. contravariant) suspended functor. We say that (F, f) is δ-exact (δ = ±1) if
for any exact triangle

A
u−→ B

v−→ C
w−→ TA

the triangle

FA
Fu−→ FB

Fv−→ FC
δfA◦Fw−→ TFA

respectively

FC
Fv−→ FB

Fu−→ FA
δfC◦FT−1w−→ TFC

is exact.

Remark 1.28. With this definition, T and T−1 are (−1)-exact functors, because of
the second axiom of triangulated categories, and the composition of exact functors
multiplies their signs. Thus, if F is δ-exact, then T iFT j is (−1)i+jδ-exact.

To define morphisms between exact functors F and G, the signs δF and δG of the
functors have to be taken into account, so that the morphism of functors induces
a morphism between the triangles obtained by applying F or G to a triangle and
making the sign modifications.

Definition 1.29. We say that h : F → G is a morphism of exact functors if the
diagram sus in Definition 1.25 is δF δG commutative.

On the other hand, we have the following lemma.

Lemma 1.30. Let h : F → G be an isomorphism of suspended functors such that
sus is ν-commutative. Assume F is δ-exact. Then G is δν-exact.

Proof: For any triangle

A
u−→ B

v−→ C
w−→ TA

the triangle

GA
Gu−→ GB

Gv−→ FC
δgA◦Gw−→ TGA

is easily shown to be isomorphic to

FA
Fu−→ FB

Fv−→ FC
νδfA◦Fw−→ TFA



14 BAPTISTE CALMÈS AND JENS HORNBOSTEL

2

We also need to deal with bifunctors from two suspended categories to another
one. These are just suspended functors in each variable, with a compatibility
condition. Examples are the internal Hom or the tensor product in triangulated
categories.

Definition 1.31. Let C1, C2 and D be suspended categories. A suspended bifunctor
from C1 × C2 to D is a triple (B, b1, b2) where B : C1 × C2 → D is a functor and
two morphisms of functors b1 : B(T (−), ∗) → TB(−, ∗) and b2 : B(−, T (∗)) →
TB(−, ∗), such that the diagram

B(TA, TC)

b1,A,T C

��

b2,T A,C//

−1

TB(TA,C)

b1,A,C

��
TB(A, TC)

b2,A,C

// T 2B(A,C)

anti-commutes for every A and C.

Definition 1.32. A morphism of suspended bifunctors from a suspended bifunctor
(B, b1, b2) to a suspended bifunctor (B′, b′1, b

′
2) is a morphism of functors f : B → B′

such that the two diagrams

B(TA,C)

fT A,C

��

b1,A,C // TB(A,C)

TfA,C

��

B(A, TC)
b2,A,Coo

fA,T C

��
B′(TA,C)

b′1,A,C // TB′(A,C) B′(A, TC)
b′2,A,Coo

are commutative for every A and C.

By composing with a usual suspended functor to C1 or C2 or from D, we get other
suspended bifunctors (the verification is easy). But, if we do that several times,
using different functors, the order in which we do it does matter. For example, as
with usual suspended functors, it is possible to define shifted versions by composing
with the suspensions in each category. This can be useful. Unfortunately, according
to the order in which we do this, we don’t get the same isomorphism of functors,
even though we get the same functors in the pair. One has to be careful about
that.

1.5. Suspended adjunctions. As with usual functors, there is a notion of ad-
junction well suited for suspended functors.

Definition 1.33. A suspended adjoint couple (L,R) is a adjoint couple in the
usual sense in which L and R are suspended functors and the unit and counit are
morphisms of suspended functors.

Definition 1.34. When (L,R) is an adjoint couple of suspended functors, using
Lemma 1.3 and Definition 1.23 we obtain shifted versions (T iLT j , T−jRT−i).

The following proposition seems to be well-known.

Proposition 1.35. Let (L,R) be an adjoint couple from C to D (of usual functors)
and let (L, l) be a suspended functor. Then

(1) there is a unique isomorphism of functors r : RT → TR that turns (R, r)
into a suspended functor and (L,R) into a suspended adjoint couple.

(2) if furthermore C and D are triangulated and (L, l) is δ-exact, then (R, r) is
also δ-exact (with the same δ).
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Proof: Point 1 is a direct corollary of Point 3 of Theorem 1.9, by taking L = L′,
R = R′, F1 = TC , G1 = T−1

C , F2 = TD, G2 = T−1
D , gL = (g′L)−1 = T−1lT−1. This

gives fR = r. The commutative diagrams F1 and F2 exactly tell us that the unit
and counit are suspended morphisms of functors with this choice of r. To prove
Point 2, we have to show that the pair (R, r) is exact. Let

A
u−→ B

v−→ C
w−→ TA

be an exact triangle. We want to prove that the triangle

RA
u−→ RB

v−→ RC
rA◦Rw−→ TRA

is exact. We first complete RA u−→ RB as an exact triangle

RA
u−→ RB

v′−→ C ′
w′−→ TRA

and we prove that this triangle is in fact isomorphic to the previous one. To do so,
one completes the incomplete morphism of triangles

LRA
LRu //

��

LRB
LRv //

��

LC ′
fRA◦LRw //

h

��

TLRA

��
A u

// B v
// C w

// TA

.

Looking at the adjoint diagram, we see that ad(h) : C ′ → RC is an isomorphism
by the five lemma for triangulated categories. 2

Theorem 1.36. Lemma 1.7, Lemma 1.8 and Theorem 1.9 holds when we replace
every functor by a suspended functor, every adjoint couple by a suspended adjoint
couple and every morphism of functor by a morphism of suspended functors.

Proof: The same proofs hold, since they only rely on operations and properties
of functors and morphism of functors, such as composition or commutative dia-
grams, that exist and behave the same way in the suspended case. 2

We now need to deal with suspended bifunctors and adjunctions. When X is a
suspended category, there is an induced suspension on MorX which we always use
except when we mention otherwise. When L is a suspended bifunctor, then L̃ is
also one in the obvious way.

When (L,R) is an ACB in which (L, l1, l2) and (R, r1, r2) are suspended bifunc-
tors, there are two ways to obtain an ACB (L(∗, T (−)), T−1R(∗,−)). The first one
is to apply Lemma 1.18 to (L,R) and (T, T−1); the second one is to apply Lemma
1.15 to (L,R) and T , to get an ACB (L(T (∗),−), R(T (∗),−)) and then use this
last couple and the isomorphisms

L(T (∗),−)
l2 // TL(∗,−)

l−1
1 // L(∗, T (−))

and

R(T (∗),−)
T−1r−1

1 (T,Id) // T−1R(∗,−)

in Lemma 1.16. Thus, we use the following definition.

Definition 1.37. Let (L,R) be an ACB from C′ to C with parameter in X ,
where C, C′ and X are suspended categories. Assume moreover that (L, l1, l2) and
(R, r1, r2) are suspended bifunctors. We say that (L,R) is a suspended adjoint
couple of bifunctors if

(1) (L̃, R̃) is a suspended adjoint couple (in the usual sense) when we take the
suspensions (Id, T ) on MorX × C and MorX × C′ and



16 BAPTISTE CALMÈS AND JENS HORNBOSTEL

(2) the two ACBs (L(∗, T (−)), T−1R(∗,−)) obtained as mentioned above co-
incide (i.e. their units and counits are the same).

Remark 1.38. Note that (1) ensures that we have suspended adjoint functors when
we fix the parameter and (2) explains the compatibility of the suspensions (including
the one for the parameter).

The following proposition is an analogue of Proposition 1.35 for suspended bi-
functors.

Proposition 1.39. Let (L,R) be an ACB such that (L, l1, l2) (resp. (R, r1, r2)) is
a suspended bifunctor. Then

(1) there exist unique r1, r2 (resp. l1, l2) such that (L,R) is a suspended ACB,
(2) if (L(A,−), l1) (resp. (L(∗, A)) is δ-exact for some object A, then so is

R(A,−) (resp. R(∗, A)).

Proof: In Point 1, the uniqueness is clear by Point 2 in Definition 1.37 for r2 and
by Lemma 1.3 for r1. The existence is obtained by applying Point 1 of Proposition
1.35 to L̃ and R̃ (and Point 1 of Definition 1.37) to get r2 from l2 (again, one has to
lift using Lemma 1.11) and then Lemma 1.16 to get r1. The fact that the required
diagram of Definition 1.31 anti-commutes is again a consequence of the uniqueness
part of Lemma 1.16. Point 2 is proved in the same way as Point 2 in Proposition
1.35. 2

We need a version of Lemma 1.19 for suspended bifunctors.

Lemma 1.40. Lemma 1.19 holds when all the functors, bifunctors and adjunctions
become suspended ones.

Proof: The proof of Lemma 1.19 works since it only involves compositions and
commutative diagrams that exist in the suspended case.
2

Finally, there is also a version of Theorem 1.9 for (suspended) bifunctors, which
is our main tool for the applications. For this reason, we state it in full detail.

Theorem 1.41. Let L, R, L′, R′, F1, G1, F2, G2 be (suspended) functors whose
sources and targets are specified by the diagram (recall the notation of Definition
1.12),

C1

G1

��
X

L // C2

G2

��
X

R
oo

C′1

F1

OO

L′ // C′2

F2

OO

R′
oo

and let fL, f ′L, gL, g′L, fR, f ′R, gR and g′R be morphisms of bifunctors (resp.
suspended bifunctors) whose sources and targets will be as follows:

LF1(∗,−)
fL // F2(∗, L′(−))
f ′L

oo L′G1(∗,−)
g′L // G2(∗, L(−))
gL

oo

F1(∗, R′(−))
f ′R // RF2(∗,−)
fR

oo G1(∗, R(−))
gR // R′G2(∗,−)
g′R

oo

Let us consider the following diagrams, in which the maps and their directions will
be the only obvious ones in all the cases discussed below.

F2(B, L′G1(A,−))

L

LF1(B, G1(A,−))

F2(B, G2(A, L(−)) Loo

OO G1(C,−)

��

//

G1

G1(C, RL(−))

R′L′G1(C,−) R′G2(C, L(−))
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F1(B, R′G2(A,−))

R

RF2(B, G2(A,−))

F1(B, G1(A, R(−))) Roo

OO F1(C,−)

��

//

F1

F1(C, R′L′(−))

RLF1(C,−) RF2(C, L′(−))

L′

L′

G2(A, F2(B, L′(−)))oo

L′G1(A, F1(B,−))

OO

G2(A, LF1(B,−))

L′G1(C, R(−))

G2

G2(C, LR(−))

��
L′R′G2(C,−) // G2(C,−)

R′

R′

G1(A, F1(B, R′(−)))oo

R′G2(A, F2(B,−))

OO

G1(A, RF2(B,−))

LF1(C, R′(−))

F2

F2(C, L′R′(−))

��
LRF2(C,−) // F2(C,−)

Then
1. Let (Gi, Fi), i = 1, 2 be ACBs (resp. suspended ACBs). Let gL (resp. fL)

be given, then there is a unique (suspended) fL (resp. gL) such that L and
L′ are commutative for any morphism f : B → A. Let gR (resp. fR) be
given, then there is a unique (suspended) fR (resp. gR) such that R and
R′ are commutative for any morphism f : B → A.

2. Let (L,R) and (L′, R′) be adjoint couples (resp. suspended adjoint couples).
Let fL (resp. f ′R) be given, then there is a unique (suspended) f ′R (resp.
fL) such that F1 and F2 are commutative. Let g′L (resp. gR) be given,
then there is a unique (suspended) gR (resp. g′L) such that G1 and G2

are commutative.
3. Assuming (Gi, Fi), i = 1, 2, are ACBs (resp. suspended ACBs), (L,R) and

(L′, R′) are (suspended) adjoint couples, and gL and g′L = g−1
L are given

(resp. fR and f ′R = f−1
R ). By 1 and 2, we obtain fL and gR (resp. gR

and fL). We then may construct fR and f ′R (resp. gL and g′L) which are
inverse to each other.

Proof: The proof is the same as for Theorem 1.9, but using Lemma 1.19 (or
1.40) instead of Lemma 1.7 for Points 1 and 2 and using the lifting of Lemma 1.11
for Point 3. 2

Remark 1.42. We didn’t state the analogues of Points 1’ and 2’ of Theorem 1.9 in
this context because we don’t need them.

1.6. Dualities. We now start using our main subject of interest: duality. As
before, we state everything for the suspended (or triangulated) case and the usual
case in a uniform way.

Definition 1.43. A category with duality is a triple (C, D,$) where C is a category
with an adjoint couple (D,Do, $,$o) from C to Co, which is an equivalence of
categories ($ is an isomorphism). A suspended (resp. triangulated) category with
duality is defined in the same way, but (D, d) is a suspended (resp. δ-exact) functor
on a suspended (resp. triangulated) category C, and the adjunction is suspended.

Remark 1.44. Observe that the standard condition (Do$o) ◦ ($o
D) = idDo is satis-

fied by the definition of an adjunction. The only difference between our definition
and Balmer’s definition [3, Def. 2.2] is that we don’t require the isomorphism
d : DT → T−1D to be an equality in the suspended or triangulated case. Assum-
ing that duality and suspension strictly commute is as bad as assuming that the
internal Hom and the duality strictly commute, or (by adjunction) that the tensor
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product and the suspension strictly commute. This is definitely a too strong con-
dition when checking strict commutativity of diagrams in some derived category.
Dropping all signs in this setting when defining these isomorphisms just by saying
“take the canonical ones” may even lead to contradictions as the results of the
Appendix show. When d = id, we say that the duality is strict.

Definition 1.45. Let (C, D,$) be a triangulated category with duality for which
(D, d) is δ-exact. By Definition 1.34 we get a shifted adjoint couple T (D,Do) =
(TD,DoT−1, $′, ($′)o) . We define the suspension of (C, D,$) as T (C, D,$) =
(C, TD,−δ$′).

Remark 1.46. This is the definition of [3, Definition 2.8] adapted to cover the non
strict case, and the next one generalizes [3, Definition 2.13] to the non strict case.

Definition 1.47. For any triangulated category with duality (C, D,$), we define
its i-th Witt group W i by Wi(C, D,$) := W (T i(C, D,$)) (extending [3, 2.4 and
Definitions 2.12 and 2.13] in the obvious way). If D and $ are understood, we
sometimes also denoted write Wi(C) for short.

Remark 1.48. In concrete terms, this means that the condition of loc. cit. for an
element in W 1(C) represented by some φ to be symmetric is that (TdT−1) ◦ φ =
(DoTφ) ◦$ whereas in the strict case the (TdT−1) may be omitted.

Definition 1.49. A duality preserving pair (of functors) between (suspended,
triangulated) categories with duality (C1, D1, $1) and (C2, D2, $2) is a 4-tuple
{F,G, f, g} where G (resp. F ) is a (suspended, δ-exact) functor from C1 to C2

(resp. from Co1 to Co2), f : D2G → FD1 in Co2 , g : GDo
1 → Do

2F in C2 are iso-
morphisms of (suspended, δ-exact) functors as in Lemma 1.7 (resp. Theorem 1.36)
when setting J1 = D1, K1 = Do

1, J2 = D2, K2 = Do
2, H = F and H ′ = G. In other

words, the diagrams H and H′ of Lemma 1.7 must commute:

G

$2G

��

G$1 // GDo
1D1

gD1

��
Do

2D2G
Do

2f
// Do

2FD1

D2GD
o
1

fDo
1

��

D2g // D2D
o
2F

$o
2F

��
FD1D

o
1

F$o
1

// F

Lemma 1.7 tells us that g is uniquely determined by f (and vice versa), so that
this data is in fact redundant. We sometimes drop the morphisms in the notation,
writing {F,G} instead of {F,G, f, g} when no confusion can occur.

Duality preserving pairs can be composed in an obvious way.

Definition 1.50. A duality preserving functor between (suspended, triangulated)
categories with dualities is a duality preserving pair {Go, G, go, g}, that we just
denote by {G, g} or sometimes even by {G}.

Again, when the duality is strict, this coincides with the usual definition (see for
example [7, Definition 2.1]). The first diagram in loc. cit. is one of the diagrams
above (the other one is identical, up to ”op”) and the second diagram is only used in
the suspended case and corresponds to the fact that g is a morphism of suspended
functor in our definition.

Duality preserving functors can be composed in an obvious way.

Definition 1.51. A morphism between (suspended, exact) duality preserving pairs
{F,G, f, g} and {F ′, G′, f ′, g′} is a pair of morphisms of (suspended, exact) functors

ρ : F ′ → F, σ : G→ G′
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such that the diagrams

GDo
1

σDo
1

��

g // Do
2F

Do
2ρ

��
G′Do

1
g′
// Do

2F
′

D2G

D2σ

��

f // FD1

ρD1

��
D2G

′
f ′
// F ′D1

commute.

As above, this data is redundant:

Lemma 1.52. Any morphism σ or ρ can be completed as a morphism of duality
preserving pairs (ρ, σ). If one of the morphisms is an isomorphism, then so is the
other one, and thus the pair.

Proof: Left to the reader. 2

Definition 1.53. A morphism between (suspended, exact) duality preserving func-
tors (G, g) and (G′, g′) is a morphism (ρ, σ) between the underlying duality pre-
serving pairs such that σoρ = id. This is equivalent to the commutativity of the
diagram

GDo
1

σDo
1

��

g // Do
2G

o

G′Do
1

g′
// Do

2(G
′)o

Do
2σ

o

OO

and we just denote the morphism σ in this case (forgetting about the redundant ρ
in the notation).

Composing two morphisms between duality preserving pairs (resp. functors)
obviously gives another one.

Definition 1.54. An adjoint couple of (suspended, triangulated) duality preserving
pairs is defined as an adjoint couple in the usual sense, but replacing functors and
morphisms of functors by (suspended, triangulated) duality preserving pairs and
morphism of (suspended, triangulated) duality preserving pairs.

Theorem 1.55. Lemma 1.7, Lemma 1.8 and Theorem 1.9 are still valid when we
replace

• every functor by a (suspended, triangulated) duality preserving pair,
• every adjoint couple by a (suspended, triangulated) adjoint couple of duality

preserving pairs,
• every morphism of functor by a (suspended, triangulated) morphism of du-

ality preserving pairs.

Proof: The proofs are the same, they just rely on compositions and commuta-
tive diagrams. 2

Note that restricting the notion of an adjoint couple of duality preserving pairs
to duality preserving functors gives something that is rarely satisfied in practice:
we would need to have functors L and R such that L is a left and a right adjoint
of R (because of the “op” in the pair, and the fact that “op” reverses the order
of adjoint couples). Nevertheless, we have a weaker situation, explained in the
following theorem, and of practical use to obtain push-forwards (see Theorem 1.75).
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Theorem 1.56. Let L and L′ be (suspended, triangulated) functors from C1 to C2,
and let l′ : L′Do

1 → Do
2L

o be an isomorphism of functors in C2. Let R : C2 → C1 be
a right adjoint to L and a left adjoint to L′, in other words Ro is a right adjoint to
(L′)o. Then

(1) there is a unique l in C2 to complete {(L′)o, L, (l′)o, l} as a (suspended,
triangulated) duality preserving pair,

(2) there are unique r and r′ such that {Ro, R, r′, r} is a (suspended, triangu-
lated) duality preserving pair and a right adjoint to {(L′)o, L, (l′)o, l}.

(3) if r′ = ro or equivalently (by uniqueness) the diagram

R

$2R

��

R$1 // RDo
1D1

rD1

��
Do

2D2R
Do

2r
o
// Do

2R
oD1

commutes, then (Ro, R, ro, r) is a duality preserving functor.

Proof: We apply Theorem 1.9 (or Theorem 1.36 in the suspended case) to
G1 = D1, F1 = Do

1, G2 = D2, F2 = Do
2, L, R, R′ = Ro, L′ there is (L′)o here and

gL = (g′L)−1 given by (l′)o. This proves Points 1 and 2. Point 3 is true by definition
of a duality preserving functor. 2

The proofs of following two propositions are straightforward (see also [7, Theorem
2.7] for a proof of the first one in the strict case).

Proposition 1.57. A 1-exact duality preserving functor induces a morphism on
Witt groups (this is not true for duality preserving pairs).

Proposition 1.58. An isomorphism between 1-exact duality preserving functors
ensures that they induce the same morphism on Witt groups.

1.7. Tensor product and internal Hom. We now recall a few notions on tensor
products and internal Hom functors (denoted by [−, ∗]) and prove very basic facts
related to the suspension. A category satisfying the axioms of this section deserves
being called a “rigid (or closed) triangulated monoidal category”.

Let (C,⊗) be a monoidal category (see [14, Chapter VII]) with an internal Hom
[ , ] adjoint to the tensor product. In the suspended case, we assume that we have
a suspended bifunctor (− ⊗ ∗, tp1, tp2) (see Definition 1.31). We further assume
that (− ⊗ ∗, [∗,−]) is an ACB. By Proposition 1.39, we get suspended bifunctors
th1 and th2 that make ([∗,−], th1, th2) a suspended bifunctor and (−⊗ ∗, [∗,−]) a
suspended ACB (Definition 1.37). Recall that the morphisms th1 and th2 obtained
are as follows:

th1 : [T−1(∗),−] → T [∗,−] th2 : [∗, T (−)] → T [∗,−]

We say that the monoidal category (C,⊗) is symmetric if we have an isomorphism
c : (−⊗ ∗) → (∗ ⊗ −) equal to its inverse and such that the diagram

A⊗ (B ⊗ C) //

1⊗c
��

sm

(A⊗B)⊗ C
c // C ⊗ (A⊗B)

��
A⊗ (C ⊗B) // (A⊗ C)⊗B

c⊗1
// (C ⊗A)⊗B

commutes (compare [14, p. 184]) and such that
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T (−)⊗ ∗

tp1

��

c //

c

∗ ⊗ T (−)

tp2

��
T (−⊗ ∗)

Tc
// T (∗ ⊗ −)

commutes in the suspended case.
In particular, using c, we obtain a new suspended ACB (∗ ⊗ −, [∗,−]) from the

previous one.
The morphisms

evlA,K : [A,K]⊗A→ K coevlA,K : K → [A,K ⊗A]

respectively

evrA,K : A⊗ [A,K] → K coevrA,K : K → [A,A⊗K]

induced by the counit and the unit of the (suspended) ACB (− ⊗ ∗, [∗,−]) (resp.
(∗ ⊗ −, [∗,−])) are called the left (resp. right) evaluation and coevaluation.

Lemma 1.59. The following diagrams are commutative.

(T [A,K])⊗A
tp1 //

1

T ([A,K]⊗A)

T evl
A,K

��
[A, TK]⊗A

th2⊗id

OO

evl
A,T K

// TK

A⊗ (T [A,K])
tp2 //

2

T (A⊗ [A,K])

T evr
A,K

��
A⊗ [A, TK]

id⊗th2

OO

evr
A,T K

// TK

(T−1[A,K])⊗ TA

T−1th1,T A,K⊗id
��

tp2 //

3

T (T−1[A,K]⊗A)
tp−1

1 // [A,K]⊗A

evl
A,K

��
[TA,K]⊗ TA

evl
T A,K

// K

(TA⊗ T−1[A,K])

id⊗T−1th1,T A,K

��

tp1 //

4

T (A⊗ T−1[A,K])
tp−1

2 // A⊗ [A,K]

evr
A,K

��
TA⊗ [TA,K]

evr
T A,K

// K

The following diagrams are anti-commutative.

(T−1[A,K])⊗ TA

T−1th1,T A,K⊗id
��

tp−1
1 //

5 −1

T−1([A,K]⊗ TA)
tp2 // [A,K]⊗A

evl
A,K

��
[TA,K]⊗ TA

evl
T A,K

// K

(TA⊗ T−1[A,K])

id⊗T−1th1,T A,K

��

tp−1
2 //

6 −1

T−1(TA⊗ [A,K])
tp1 // A⊗ [A,K]

evr
A,K

��
TA⊗ [TA,K]

evr
T A,K

// K
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Proof: This is a straightforward consequence of Point 1 of Definition 1.37 (see
Remark 1.38) for the first two diagrams and of Point 2 of Definition 1.37 for the
next two. The last two diagrams are obtained from the previous two by stacking
over them the anti-commutative diagram from the Definition 1.31 of a suspended
bifunctor. 2

1.8. Bidual isomorphism. We still assume that C is a monoidal category with
an internal Hom as in the previous section. When K is a dualizing object in C
(see below) and the functor DK = [−,K] is exact, we show it naturally defines a
duality on the C. We also show in the suspended case that the dualities DTK and
TDK are naturally isomorphic.

To form the adjoint couple (DK , D
o
K , $K , $

o
K), we define the bidual morphism of

functors $K : Id→ Do
KDK as the image of the right evaluation by the adjunction

(−⊗ ∗, [∗,−]) isomorphism

Hom(A⊗ [A,K],K) ∼ // Hom(A, [[A,K],K]) .

It is functorial in A and defines a morphism of functors from Id to Do
KDK . Note

that its definition uses the adjunction (−⊗∗, [∗,−]) and the right evaluation, which
is not the counit of this adjunction but of the one obtained from it by using c; so
the fact that the monoidal category is symmetric is essential, here. One cannot
proceed with only one of these adjunctions. In the suspended case, DK becomes a
suspended functor via T−1th−1

1,−,KT : DKT → T−1DK .

Proposition 1.60. In the suspended (or triangulated) case, $K is a morphism of
suspended (or exact) functors.

Proof: First note that in the exact case, whatever the sign of DK is, Do
KDK is

1-exact, so there is no sign involved in the diagram

TA

T$K

��

$KT // [[TA,K],K]

T−1th1,T A,K

��
T [[A,K],K]

th−1
1,[A,K],K

// [T−1[A,K],K]

that we have to check (see Definitions 1.29 and 1.25). It is obtained by (suspended)
adjunction from the fourth diagram in Lemma 1.59 2

Definition 1.61. We say that K is a dualizing object when $K is an isomorphism
of (suspended) functors.

Proposition 1.62. When K is a dualizing object, the triple (C, DK , $K) is a
(suspended) category with duality. When C is triangulated and DK is δ-exact, then
(C, DK , $K) is a triangulated category with duality which we often denote by CK
for short.

Proof: We have to prove (see Definition 1.43) that (DK , D
o
K , $K , $

o
K) is an

adjoint couple. We already know that $K is a suspended isomorphism. Consider
the following diagram, in which all vertical maps are isomorphisms. We use the
notation f ] : Hom(F ′, G) → Hom(F,G) and f] : Hom(G,F ) → Hom(G,F ′) for
the maps induced by f : F → F ′. The unlabeled morphisms are just adjunction
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bijections, and we set $A,K := ($K)A.

Hom([A,K], [A,K]) Hom([A,K], [[[A,K],K],K])
([$A,K ,IdK ])]oo

Hom([A,K]⊗A,K)

OO

Hom([A,K]⊗ [[A,K],K],K)
(Id[A,K]⊗$A,K)]

oo

OO

Hom(A⊗ [A,K],K)

c]
A,[A,K]

OO

��

Hom([[A,K],K]⊗ [A,K],K)
($A,K⊗Id[A,K])

]

oo

c]
[[A,K],K],[A,K]

OO

��
Hom(A, [[A,K],K]) Hom([[A,K],K], [[A,K],K])

($A,K)]

oo

The diagram commutes by functoriality of c and the adjunction bijections. Now
Id[[A,K],K] in the lower right set is sent to $[A,K],K in the upper right set, which
is in turn sent to [$A,K ,K] ◦$[A,K],K in the upper left set. But Id[[A,K],K] is also
sent to $A,K in the lower left set, which is sent to Id[A,K] in the upper left set by
definition of $A,K . This proves the two required formulas (see Definition 1.1) for
the composition of the unit and the counit in the adjoint couple (which are identical
in this case). 2

Proposition 1.63. When DK is δ-exact, so is DTK , and the isomorphism th2 :
[−, T (∗)] → T [−, ∗] defines a suspended duality preserving functor {IdC , th2,−,K}
from CTK to T (C, DK , δ$K). This functor is an isomorphism of triangulated cate-
gories with duality and therefore induces an isomorphism on Witt groups.

Proof: Since we know by 1.28 that TDK is (−δ)-exact, the fact that the diagram
sus is anti-commutative (see Definition 1.29) shows by 1.30 that DTK is δ-exact.

This just follows from the fact that ([−, ∗], th1, th2) is a suspended bifunctor. Then,
we obtain that by adjunction from 2 in Lemma 1.59 the fact that th2 defines a
duality preserving functor (see Definition 1.50). 2

We conclude this section by a trivial lemma for future reference.

Lemma 1.64. Let i : K → M be an isomorphism with K a dualizing object such
that DK is δ-exact. Then M is also dualizing, DM is δ-exact and {Id, Ii}, where
Ii : DK → DM is induced by i, is a duality preserving functor that induces an iso-
morphism on Witt groups. When we chain isomorphisms, this respects composition.
If j : M → N is another isomorphism, then {Id, Iji} = {Id, Ij}{Id, Ii}.

1.9. Classical adjunctions and the projection formula isomorphism. In
this section, we will assume that we have adjoint couples (f∗, f∗) and (f∗, f !), such
that the projection formula morphism is an isomorphism. We will then construct
a functor between (triangulated) categories with dualities that will provide the
desired push-forward.

Assume from now on that all categories considered are symmetric monoidal with
a right adjoint to the tensor product ⊗ called internal Hom and denoted [∗,−], and
these two form an ACB. The tensor product is assumed to be exact in both vari-
ables, and by Proposition 1.39, in the suspended (triangulated) case, we turn [∗,−]
into a suspended (exact) bifunctor such that (− ⊗ ∗, [∗,−]) is a suspended ACB.
We will then assume successively:

(1) the functor f∗ : C1 → C2 is a symmetric monoidal (suspended, exact in both
variables) functor, which means that it comes equipped with an isomorphism of
(suspended) bifunctors fp : f∗(−)⊗ f∗(∗) → f∗(−⊗ ∗) and with an isomorphism
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f∗(1) ' 1 making the standard diagrams commutative (see [14, section XI.2] for
the details where such functors are called strongly monoidal),
(2) we have a functor f∗ : C2 → C1 that fits into an adjoint couple (f∗, f∗, η∗∗ , ε

∗
∗),

(3) we have a functor f ! : C1 → C2 that fits into an adjoint couple (f∗, f !, η!
∗, ε

!
∗),

(4) the morphism fhK : f∗[−,K] → [f∗(−), f∗K] from Proposition 1.68 is an
isomorphism,
(5) the morphism qp : f∗(−) ⊗ ∗ → f∗(− ⊗ f∗(∗)) from Proposition 1.71 is an
isomorphism (the “projection formula” isomorphism),
(6) K is a dualizing object in C1 (see Definition 1.61),
(7) f∗K is a dualizing object in C2,
(8) f !K is a dualizing object in C2.

Remark 1.65. Later, we will consider five more assumptions which are introduced
after Proposition 1.79, in Proposition 1.91, at the beginning of Section 1.14 and
after Lemma 1.103, respectively.

Proposition 1.66. Assume (1) and (2). Let a : f∗(−⊗ f∗(∗)) → f∗(−)⊗∗ be the
morphism of (suspended) bifunctors defined by the composition

f∗(−⊗ f∗(∗))
fp−1
//f∗(−)⊗ f∗f∗(∗)

ε∗∗ //f∗(−)⊗ ∗ .

Then, there are unique morphisms

fg : f∗(−)⊗ f∗(∗) → f∗(−⊗ ∗)

and

ff : f∗[∗,−] → [f∗(∗), f∗(−)]

of (suspended) bifunctors such that the diagrams

[f∗A, f∗(−⊗B)]

7

f∗[A,−⊗B]
ffoo

[f∗A, f∗(−)⊗ f∗B]

fg]

OO

f∗(−)oo

OO
f∗(−)

8

[f∗A, f∗(−)]⊗ f∗Boo

f∗([A,−]⊗B)

OO

f∗[A,−]⊗ f∗B
fgoo

ff⊗id

OO

−⊗ f∗C

��

//

9

f∗f
∗(−)⊗ f∗C

fg

��
f∗f

∗(−⊗ f∗C) a // f∗(f∗(−)⊗ C)

f∗(f∗(−)⊗ f∗C)

fg

��

a
//

10

f∗f∗(−)⊗ C

��
f∗f∗(−⊗ C) // −⊗ C

commute for every morphism A→ B and for every object C in C1.

Proof: Apply Theorem 1.41 Point 2 and then Point 1 to L = L′ = f∗, R =
R′ = f∗ G1 = −⊗ f∗(∗), F1 = [f∗(∗),−], G2 = (−⊗ ∗), F2 = [∗,−] and g′L = a. 2

Lemma 1.67. The diagram

f∗A⊗ f∗B

c(f∗⊗f∗)
��

fg //

11

f∗(A⊗B)

f∗c

��
f∗B ⊗ f∗A

fg // f∗(B ⊗A)

is commutative.



WITT MOTIVES, TRANSFERS AND DÉVISSAGE 25

Proof: Apply Lemma 1.8 to the cube

C2 × C2
⊗ //

τ

��?
??

??
??

??
C2

Id

��?
??

??
??

??

C2 × C2

c

;C���������

��������� ⊗ // C2

C1 × C1

f∗×f∗

OO

τ

��?
??

??
??

??

C1 × C1

**************************

**************************

f∗×f∗

OO

⊗
// C1

fp−1

[c??????????????????????

??????????????????????

f∗

OO

front

C2 × C2
⊗ // C2

Id

��?
??

??
??

??

C2

C1 × C1

f∗×f∗

OO

τ

��?
??

??
??

??
// C1

fp−1

[c??????????????????????

??????????????????????

f∗

OO

Id
��?

??
??

??
??

C1 × C1

c

;C���������

���������

⊗
// C1

**************************

**************************

f∗

OO

back

where τ is the functor exchanging the components. Note that the morphism of
functors f∗(−⊗∗) → f∗(−)⊗ f∗(∗) obtained on the front and back squares indeed
coincides with fg by construction. 2

Proposition 1.68. Under Assumption (1), there is a unique morphism

fh : f∗[−, ∗] → [f∗(−), f∗(∗)]

of (suspended) bifunctors such that the diagrams

[f∗A, f∗(−⊗B)]

12

f∗[A,−⊗B]
fhoo

[f∗A, f∗(−)⊗ f∗B]

fp

OO

f∗(−)oo

OO
f∗(−)

13

[f∗A, f∗(−)]⊗ f∗Boo

f∗([A,−]⊗B)

OO

f∗[A,−]⊗ f∗B
fpoo

fh

OO

commute for every morphism A→ B in C1.

Proof: Apply Theorem 1.41 Point 1 to L = L′ = f∗, G1 = − ⊗ ∗, F1 = [∗,−],
G2 = (− ⊗ f∗(∗)), F2 = [f∗(∗),−] and gL = (g′L)−1 = fp (recall that in an ACB,
the variable denoted ∗ is the parameter, as explained in Definition 1.12). Then
define fh = fL. 2

Theorem 1.69. (existence of the pull-back) Under Assumptions (1) for f∗, (6)
for K, (4) and (7) for f∗ and K, the isomorphism

fhK : f∗[−,K] → [f∗(−), f∗K]

defines a duality preserving functor {f∗, fhK} of (suspended, triangulated) cate-
gories with duality from (C1)K to (C2)f∗K .

Proof: We need to show that the diagram

f∗

$Kf
∗

��

f∗$K // f∗Do
KDK

fhKDK

��
Do
f∗KDf∗Kf

∗ Df∗Kfh
o
K // Df∗K(f∗)oDK
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commutes. This follows from the following commutative diagram (for all A in C1).

f∗A

coevl

��

coevl
//

12

f∗[[A,K], A⊗ [A,K]]

fh

��

(evr)] //

mf

f∗[[A,K],K]

fh

��
[f∗[A,K], f∗A⊗ f∗[A,K]]

fp] //

mf

[f∗[A,K], f∗(A⊗ [A,K])] //

mf

[f∗[A,K], f∗K]

[[f∗A, f∗K], f∗A⊗ f∗[A,K]]

fh] o

OO

fh] o
��

// [[f∗A, f∗K], f∗(A⊗ [A,K])]

fh] o

OO

// [[f∗A, f∗K], f∗K]

fh]o

OO

[[f∗A, f∗K], f∗A⊗ [f∗A, f∗K]]

13′

(evr)]

33

where 13′ is obtained from 13 by using the compatibility of fp with c. By
functoriality of coev, the counit of the adjunction of bifunctors (−⊗ ∗, [−, ∗]), the
left hand side vertical composition is coev again, and the outer part of this diagram
diagram is therefore the one we are looking for. In the suspended (or triangulated)
case, fh is a morphism of suspended functors by Proposition 1.68. 2

Proposition 1.70. In the suspended case, under Assumption (2) there is a unique
way of turning f∗ into a suspended functor such that (f∗, f∗) is a suspended adjoint
couple. If further Assumption (3) holds, then there is a unique way of turning f !

into a suspended functor such that (f∗, f !) is a suspended adjoint couple.

Proof: Both results follow directly from Proposition 1.35. 2

Proposition 1.71. Under Assumptions (1) and (2), there is a unique morphism

qp : f∗(−)⊗ ∗ → f∗(−⊗ f∗(∗))

and a unique isomorphism

qh : [∗, f∗(−)] → f∗[f∗(∗),−]

of (suspended) bifunctors such that the diagrams

[A, f∗(−⊗ f∗B)]

14

f∗[f∗A,−⊗ f∗B]
qh−1
oo

[A, f∗(−)⊗B]

qp

OO

f∗oo

OO
f∗

15

[A, f∗(−)]⊗Boo

f∗([f∗A,−]⊗ f∗B)

OO

f∗[f∗A,−]⊗B
qpoo

qh−1

OO

−⊗A

��

//

16

f∗f
∗(−)⊗A

qp

��
f∗f

∗(−⊗A)
fp−1
// f∗(f∗(−)⊗ f∗A)

f∗(f∗(−)⊗A)

qp

��

fp−1
//

17

f∗f∗(−)⊗ f∗A

��
f∗f∗(−⊗ f∗A) // −⊗ f∗A

[A,−]

��

//

18

[A, f∗f∗(−)]

qh

��
f∗f

∗[A,−]
fh // f∗[f∗A, f∗(−)]

f∗[A, f∗(−)]

qh

��

fh
//

19

[f∗A, f∗f∗(−)]

��
f∗f∗[f∗A,−] // [f∗A,−]

commute for any morphism A→ B.

Proof: Apply Point 3 of Theorem 1.41 with L = L′ = f∗, R = R′ = f∗,
G1 = −⊗∗, G2 = −⊗ f∗(∗), F1 = [∗,−], F2 = [f∗(∗),−], gL = (g′L)−1 = fp. Then
define qp = gR and qh = f ′R. 2
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Lemma 1.72. The composition

f∗(−)⊗ (∗)
Id⊗η∗∗ // f∗(−)⊗ f∗f

∗(∗)
fg // f∗(−⊗ f∗(∗))

coincides with qp.

Proof: This follows from the commutative diagram (for any A and B in C2)

f∗A⊗B

��

qp

&&

//

mf

f∗A⊗ f∗f
∗B

��
fg

��

f∗f
∗(f∗A⊗B)

fp−1

��

//

mf

f∗f
∗(f∗A⊗ f∗f

∗B)

fp−1

��
f∗(f∗f∗A⊗ f∗B)

��

//

mf

f∗(f∗f∗A⊗ f∗f∗f
∗B)

��
f∗(A⊗ f∗B) //

Id

adj

55
f∗(A⊗ f∗f∗f

∗B) // f∗(A⊗ f∗B)

in which the curved maps are indeed fg and qp by construction. 2

Lemma 1.73. The composition

f∗[f∗(−), ∗]
ff // [f∗f∗(−), f∗(∗)]

(η∗∗)
]

// [−, f∗(∗)]

coincides with qh.

Proof: This follows from the commutative diagram (for any A in C1 and B in
C2)

f∗[f∗A,B]

coevl

��

ff

((

coevl
//

mf

[A, f∗[f∗A,B]⊗A]

(η∗∗)]
��

qp]

xx

[f∗f∗A, f∗[f∗A,B]⊗ f∗f
∗A]

fg]
��

(η∗∗)
]

//

mf

[A, f∗[f∗A,B]⊗ f∗f
∗A]

fg]
��

[f∗f∗A, f∗([f∗A,B]⊗ f∗A)]

evl

��

//

mf

[A, f∗([f∗A,B]⊗ f∗A)]

evl

��
[f∗f∗A, f∗B]

(η∗∗)
]

// [A, f∗B]

in which the left curved arrow is ff by construction, the right one is qp by Lemma
1.72 and the composition from the top left corner to the bottom right one along
the upper right corner is then qh by construction. 2

Proposition 1.74. Under assumptions (1), (2), (3) and (5), there is a unique
morphism

sp : f !(−)⊗ f∗(∗) → f !(−⊗ ∗)
and a unique isomorphism

sh : f ![∗,−] → [f∗(∗), f !(−)]

of (suspended) bifunctors such that the diagrams

[f∗A, f !(−⊗B)]

20

f ![A,−⊗B]
sh
oo

[f∗A, f !(−)⊗ f∗B]

sp

OO

f !oo

OO f !

21

[f∗A, f !(−)]⊗ f∗Boo

f !([A,−]⊗B)

OO

f ![A,−]⊗ f∗B
spoo

sh

OO
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[f∗A,−] //

��
22

[f∗A, f !f∗(−)]

sh−1

��
f !f∗[f∗A,−]

qh−1
// f ![A, f∗(−)]

f∗[f∗A, f !(−)]

sh−1

��

qh−1
//

23

[A, f∗f !(−)]

��
f∗f

![A,−] // [A,−]

−⊗ f∗A

��

//

24

f !f∗(−)⊗ f∗A

sp

��
f !f∗(−⊗ f∗A)

qp−1
// f !(f∗(−)⊗A)

f∗(f !(−)⊗ f∗A)

sp

��

qp−1
//

25

f∗f
!(−)⊗A

��
f∗f

!(−⊗A) // −⊗A

commute for any morphism A→ B in C1.

Proof: Apply Point 3 of Theorem 1.41 with L = L′ = f∗, R = R′ = f !,
G1 = −⊗ f∗(∗), G2 = −⊗ ∗, F1 = [f∗(∗),−], F2 = [∗,−], gL = (g′L)−1 = qp. Note
that we first obtain a second time the (same) morphism qh−1 as in Proposition
1.71. Then define sh = fR and sp = gR. 2

In particular, this gives isomorphisms shK : f !Do
K → Do

f !K(f∗)o (in C2) for each
K.

Theorem 1.75. (existence of the push-forward) Under Assumptions (1), (2), (3)
and (5) for f∗, (6) for K and (8) for f !K there are unique isomorphisms of (sus-
pended) functors

sh′K : f∗Do
K → Do

f !K(f !)o

and
rK : f∗Do

f !K → Do
Kf

o
∗

such that the diagrams

Do
f !K(f !)oDK

26

f∗Do
KDK

sh′Koo

Do
f !KDf !Kf

∗

sho
K

OO

f∗oo

OO f !

��
27

// Do
f !KDf !Kf

!

(sh′K)o

��
f !Do

KDK shK

// Do
f !K(f∗)oDK

Do
Kf

o
∗Df !K

28

f∗D
o
f !KDf !K

rKoo

Do
KDKf∗

ro
K

OO

f∗oo

OO

commute (for convenience, all diagrams are displayed in C1 or C2, and not in Co1 or
Co2). In other words,

(1) {(f !)o, f∗, shK , (sh′K)o} is a duality preserving pair of (suspended, triangu-
lated) categories with duality from (C2)K to (C1)f !K ,

(2) {f∗, rK} is a duality preserving functor of (suspended, triangulated) cate-
gories with duality from (C2)f !K to (C1)K .

Proof: First note that since (f∗, f !) is an adjoint couple, so is ((f !)o, fo∗ ) (beware
of the order). The result is then a straightforward application of Theorem 1.56: we
start with L′ = f !, L = f∗, R = f∗ and l′ = shK to obtain first sh′K = l by Point
1 and then rK = r by Point 2. The last result follows if we prove that the diagram
in Theorem 1.56 Point 3, corresponding here to 28 , is commutative. Let us first
prove the following.
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Lemma 1.76. The composition

f∗[−, f !K]
ff // [f∗(−), f∗f !K]

(ε!∗)] // [f∗(−),K]

coincides with rK .

Proof: This follows from the commutative diagram (for every A and B in C2)

f∗[A, f !K]

ff
��

//

mf

f∗[f∗f∗A, f !K]

ff
��

sh−1
K

//

23

f∗f
![f∗A,K]

ε!∗

��

[f∗A, f∗f !K] //

adj
SSSSSSSSSSS

SSSSSSSSSSS
[f∗f∗f∗A, f∗f !K]

(η∗∗)
]

��
[f∗A, f∗f !K]

(ε!∗)] // [f∗A,K]

identifying the vertical composition in the middle with qh−1 by Lemma 1.73 to
recognize 23 . The composition around the top right corner is then rK by con-
struction. 2

Diagram 28 of the theorem now follows from the commutative diagram

f∗A

coevl

��

coevl
//

7

f∗[[A, f !K], A⊗ [A, f !K]]

ff
��

evr
] //

mf

f∗[[A, f !K], f !K]

ff
��

[f∗[A, f !K], f∗A⊗ f∗[A, f !K]] //

mf

[f∗[A, f !K], f∗(A⊗ [A, f !K])] //

mf

[f∗[A, f !K], f∗f !K]

[[f∗A,K], f∗A⊗ f∗[A, f !K]]

r] o
OO

ff]
��

// [[f∗A,K], f∗(A⊗ [A, f !K])]

r] o
OO

// [[f∗A,K], f∗f !K]

r]o
OO

(ε!∗)]
��

[[f∗A,K], f∗A⊗ [f∗A, f∗f !K]]

(ε!∗)]
��

8′

(evr)]

22

[[f∗A,K],K]

[[f∗A,K], f∗A⊗ [f∗A,K]]

mf

(evr)]

22

where 8′ is obtained from 8 by using 11 . The two last maps of the vertical
composition on the left coincide with r] by Lemma 1.76. By functoriality of coev,
the left vertical composition is thus equal to coev[f∗A,K],f∗A, so going from the top
left corner to the bottom right corner of the diagram counterclockwise gives the
morphism $f∗A,K . On the other hand, the composition on the top is f∗$f !K , so it
just remains to show that we can complete the commutative diagram on the right
to get the last two maps rKDf !K and Do

KrK . This is achieved by the following
commutative diagram, using again Lemma 1.73 for the triangle.

f∗[[A, f !K], f !K]

ff
��

rKDf!K

**TTTTTTTTTTTT

[f∗[A, f !K], f∗f !K] //

mf

[f∗[A, f !K],K]

[[f∗A,K], f∗f !K]

r]
K

OO

(ε!∗)] // [f∗[f∗A,K],K]

r]
K

OO

2
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1.10. Associativity of products. We now establish a few commutative diagrams
related to the associativity of the tensor product. For simplicity, we assume that it
is strictly associative.

Since f∗ is monoidal, the diagram (involving fp)

f∗A⊗ f∗B ⊗ f∗C //

�� 29

f∗(A⊗B)⊗ f∗C

��
f∗A⊗ f∗(B ⊗ C) // f∗(A⊗B ⊗ C)

is commutative.

Proposition 1.77. Under Assumptions (2) (for the first diagram), (3), and (5),
the following diagrams are commutative.

f∗A⊗B ⊗ C

qp

��

qp
//

30

f∗(A⊗ f∗B)⊗ C

qp

��
f∗(A⊗ f∗(B ⊗ C))

fp−1
// f∗(A⊗ f∗B ⊗ f∗C)

f !A⊗ f∗B ⊗ f∗C

fp

��

sp //

31

f !(A⊗B)⊗ C

sp

��
f !A⊗ f∗(B ⊗ C)

sp // f !(A⊗B ⊗ C)

Proof: Consider the commutative diagram

f∗A⊗B ⊗ C

η∗∗ ��

qp //

mf

f∗(A⊗ f∗B)⊗ C

η∗∗��
f∗f

∗(f∗A⊗B ⊗ C)

fp−1

wwooooooooooooooooooooooo
fp−1

��

//

mf

f∗f
∗(f∗(A⊗ f∗B)⊗ C)

fp−1

��
f∗(f∗(f∗A⊗B)⊗ f∗C)

fp−1

��

//

17

f∗(f∗f∗(A⊗ f∗B)⊗ f∗C)

ε∗∗��
f∗(f∗f∗A⊗ f∗(B ⊗ C))

fp−1
//

ε∗∗ ++WWWWWWWWWWWWWWW

29

mf

f∗(f∗f∗A⊗ f∗B ⊗ f∗C)
ε∗∗ // f∗(A⊗ f∗B ⊗ f∗C)

f∗(A⊗ f∗(B ⊗ C))
fp−1

33ggggggggggggggg

whose outer part is diagram 30 by construction of the morphisms involved. Simi-
larly, we prove 31 by using the commutative diagram

f !A⊗ f∗B ⊗ f∗C
fp

ssgggggggggggggg

��

sp //

mf

f !(A⊗B)⊗ f∗C

η!
∗��

f !A⊗ f∗(B ⊗ C)

η!
∗ ��

mf f !f∗(f !A⊗ f∗B ⊗ f∗C)
fp

ssgggggggggggggg
qp−1

��

//

mf

f !f∗(f !(A⊗B)⊗ f∗C)

qp−1

��
f !f∗(f !A⊗ f∗(B ⊗ C)) 30

qp−1 ++WWWWWWWWWWWWWW
f !(f∗(f !A⊗ f∗B)⊗ C)

qp−1

��

//

25

f !(f∗f !(A⊗B)⊗ C)

ε!∗��
f !(f∗f !A⊗B ⊗ C)

ε!∗ // f !(A⊗B ⊗ C)

2

This result automatically implies that all higher associativity diagrams involving
more than three factors commute. For example the following cube (involving only
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fp and sp) commutes, just because all its faces commute.

f !A⊗ f∗B ⊗ f∗C ⊗ f∗D

��

))SSS
SS

// f !(A⊗B)⊗ f∗C ⊗ f∗D

��

))SSS
SS

f !A⊗ f∗(B ⊗ C)⊗ f∗D

��

// f !(A⊗B ⊗ C)⊗ f∗D

��
f !A⊗ f∗B ⊗ f∗(C ⊗D)

))SSS
SS

// f !(A⊗B)⊗ f∗(C ⊗D)
))SSS

SS

f !A⊗ f∗(A⊗B ⊗ C) // f !(A⊗B ⊗ C ⊗D)

We now define two more classical morphisms.

Definition 1.78. Consider objects K,M ∈ C1 such that Assumption (6) from
Section 1.9 is satisfied for K, M and K ⊗M . We define the morphism dK,M :
DK ⊗DM → DK⊗M by the composition (for any A1 and A2 in C)

[A1,K]⊗ [A2,M ] → [A1 ⊗A2, ([A1,K]⊗ [A2,M ])⊗ (A1 ⊗A2)]

→ [A1 ⊗A2, ([A1,K]⊗A1)⊗ ([A2,M ]⊗A2)] → [A1 ⊗A2,K ⊗M ].

where the first map is induced by the unit of the adjoint couple (− ⊗ ∗, [∗,−]),
the second is induced by c (the commutativity of ⊗) and the third by the tensor
product of the left evaluation maps evlA,K ⊗ evlB,M .

The proofs of the next two results are left to the reader. They are not difficult
although they require large commutative diagrams.

Proposition 1.79. The morphism dK,M is a morphism of suspended bifunctors.

Let us consider the following Assumption:
(9) The morphism dK,M is an isomorphism.

The proof of the following lemma uses the unit of the tensor product.

Lemma 1.80. Assumptions (6) and (9) for K and M imply (6) for K ⊗ M .
Assumptions (4) and (9) for K and M imply (4) for K ⊗M .

Definition 1.81. We define an “internal adjunction” morphism of functors

adA,B,C : [A⊗B,C] → [A, [B,C, ]]

by the composition

[A⊗B,C]
coevA // [A, [A⊗B,C]⊗A]

(coevB)]// [A, [B, [A⊗B,C]⊗A⊗B]]

(evl
A⊗B)] // [A, [B,C]]

It is well known that this morphisms is an isomorphism (see for example [24, I, §
3.2]).

Definition 1.82. We define an “internal composition” morphism of functor

compA,B,C : [A,B]⊗ [B,C] → [A,C]

by the composition

[A,B]⊗ [B,C]
coevr

A // [A,A⊗ [A,B]⊗ [B,C]]
(evr

A⊗Id)]// [A,B ⊗ [B,C]]
(evr

B)] // [A,C] .
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1.11. Units of tensor products. In the same spirit as in Section 1.10, we now
establish commutative diagrams related to the unit of the tensor product. All proofs
are easy and similar to the ones from Section 1.10, so we leave them to the reader.

Recall that a monoidal category C has a unit object 1C and right and left unit
isomorphism of functors

IdC ⊗ 1C → IdC 1C ⊗ IdC → IdC

satisfying some compatibilities with the associativity and symmetry morphisms. A
monoidal functor f∗ : C1 → C2 comes equipped with an isomorphism f∗1C1 → 1C2

making the diagram

f∗A⊗ f∗1C1

��

//

32

f∗(A⊗ 1C1)

��
f∗A⊗ 1C2

// f∗A

commutative for any object A of C1, and similarly for the left unit isomorphism.
From diagram 32 , one deduces that the following diagrams are commutative

(under the suitable assumptions discussed previously for the existence of the maps).

f∗A⊗ 1C1

��

qp //

33

f∗(A⊗ f∗1C1)

��
f∗A f∗(A⊗ 1C2)oo

f !A⊗ f∗1C1

��

sp //

34

f !(A⊗ 1C1)

��
f !A⊗ 1C2

// f !A

By adjunction from the map A ⊗ 1 → A, we obtain a map A → [1, A]. This map
is an isomorphism with inverse given by the composition

[1, A] //1⊗ [1, A] evr
//A .

From this, we obtain two more commutative diagrams.

f∗A

��

//

35

f∗[1C1 , A]

��
[1C2 , f

∗A] // [f∗1C1 , f
∗A]

[1,K]⊗ [1,M ] d //

36

[1⊗ 1,K ⊗M ]

K ⊗M

OO

// [1,K ⊗M ]

OO

Proposition 1.83. Under the suitable assumptions for their existence explained
above, the morphisms

f∗A⊗ 1C1

qp //f∗(A⊗ f∗1C1) ,

f !A⊗ f∗1C1

sp //f !(A⊗ 1C1) ,

f∗[1C1 , A]
fh // [f∗1C1 , f

∗A]

and

[1,K]⊗ [1,M ] d // [1⊗ 1,K ⊗M ]

are always isomorphisms.

Proof: The other arrows in the diagrams 33 , 34 , 35 and 36 are isomor-
phisms. 2

Lemma 1.84. The isomorphism 1 → [1,1] defined above (with A = 1) is a sym-
metric form, which is a unit for the product on Witt groups.
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Proof: Left to the reader. Note that a form A → [A,K] is symmetric if and
only if it is adjoint to a morphism A ⊗ A → K invariant by exchanging the two
copies of A by c. 2

We next give a few interesting facts concerning invertible objects.

Definition 1.85. An object K is invertible if there exists an object K−1 and an

isomorphism K−1 ⊗K
inv //1 .

Let A be any object. We obtain a map 1 → [A,A] by the composition

1 coevl
// [A,1⊗A] ' [A,A] .

Using the isomorphism A→ [1, A] from the previous section as well as d, one also
obtains a map [A,B]⊗ C → [A,B ⊗ C] by the composition

[A,B]⊗ C
∼ // [A,B]⊗ [1, C] // [A⊗ 1, B ⊗ C] ∼ // [A,B ⊗ C] .

Proposition 1.86. (1) Let K be an invertible object and let K−1 be an inverse
of K. Then there is a natural isomorphism K−1 ∼→ [K,1] such that the
diagram

K−1 ⊗K

inv
$$H

HH
HH

HH
HH

H
∼ // [K,1]⊗K

evl

zzuuuuuuuuuu

1
commutes.

(2) An object K is invertible if and only if the morphism evlK,1 : [K,1]⊗K → 1
is an isomorphism.

(3) If K is invertible, then the map 1 → [K,K] defined above is an isomor-
phism.

(4) If K is invertible, then the map [A,1] ⊗K → [A,K ⊗ 1] ' [A,K] defined
above is an isomorphism.

(5) If 1 is dualizing and K is invertible, then K is dualizing.

Proof: For Point 1, the required morphism is given by the composition

K−1
coevl

K // [K,K−1 ⊗K]
inv] // [K,1] .

One may check that inverse is given, up to an automorphism of order two of K
(induced by the signature of K, see [24, I, § 2.5]) by the composition

[K,1] ∼ //1⊗ [K,1] inv
−1
//K−1 ⊗K ⊗ [K,1] evr

//K−1 .

Point 2 is then an immediate consequence of Point 1. For Point 3, the required
inverse is

[K,K] ∼ // [K,K]⊗ 1
(evr

K)−1

// [K,K]⊗K ⊗ [K,1]
evl

K⊗Id//K ⊗ [K,1]
evr

K //1 .

For Point 4, the inverse of the map is given by the composition

[A,K] ∼ // [A,K]⊗ 1
(evl)−1

// [A,K]⊗ [K,1]⊗K
comp // [A,1]⊗K

For Point 5, the inverse of the bidual isomorphism $A,K is given by

[[A,K],K] ∼ // [[A,1]⊗K,K] ad // [[A,1], [K,K]] ∼ // [[A,1],1]
$−1

A,1 //A

2
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1.12. Projection formula. In [10], Gille and Nenashev define two natural prod-
ucts for Witt groups. These products coincide up to a sign. We just choose one of
them (the left product, for example), and refer to it as the product, but everything
works fine with the other one too. In this section, we show that a projection formula
is satisfied for the product. Let us first recall the basic properties of the product,
rephrasing [10] in our terminology.

Theorem 1.87. ([10, Definition 1.11 and Theorem 2.9]) Let C1, C2 and C3 be
triangulated categories with dualities D1, D2 and D3. Let (B, b1, b2) : C1×C2 → C3

be a suspended bifunctor (see Definition 1.31) and d : B(Do
1 × Do

2) → Do
3B

o be
an isomorphism of suspended bifunctors (see Definition 1.32) that makes {B, d} a
duality preserving functor (see Definition 1.50, here C1 × C2 is endowed with the
duality D1 ×D2). Then {B, d} induces a product

W(C1)×W(C2) → W(C3).

The following proposition is not stated in [10], but easily follows from the con-
struction of the product.

Proposition 1.88. Let ρ : B → B′ be an isomorphism of suspended bifunctors
that is duality preserving. Then B and B′ induce the same product on Witt groups.

Let us now apply this to our context.

Proposition 1.89. (existence of the product) Under the assumptions (6) and (9)
for K and M (which imply (6) for K ⊗ M by Lemma 1.80), dK,M turns {− ⊗
∗, dK,M} into a duality preserving functor from (C × C, DK × DM , $K × $M ) to
(C, DK⊗M , $K⊗M ). By Theorem 1.87, it therefore induces a product

W(CK)×W(CM ) → W(CK⊗M )

on Witt groups.

We now also assume that (1), (2), (3), (4), (5), (7) and (8) are satisfied for
the objects K and M in C1, and that (9) is satisfied for the couples (K,M) and
(f∗K, f∗M). We have already seen in Theorem 1.69 that {f∗, fhK⊗M} is a duality
preserving functor between (suspended, triangulated) categories with dualities. Let
Ifp : (C2)f∗K⊗f∗M → (C2)f∗(K⊗M) be the duality preserving functor induced by fp
(using Lemma 1.64). We have the following diagram of duality preserving functors.

(C1)K × (C1)M

{f∗×f∗,fhK×fhM}
��

{−⊗∗,dK,M} // (C1)K⊗M

{f∗,fhK⊗M}
��

(C2)f∗K × (C2)f∗M
{−⊗∗,df∗K,f∗M}

// (C2)f∗K⊗f∗M
Ifp // (C2)f∗(K⊗M)

Proposition 1.90. (the pull-back respects the product) Under the assumptions for
the existence of the pull-back (1.69) for K, M and f∗ and the existence of the prod-
uct (1.89) for (K,M) and for (f∗K, f∗M), the isomorphism of suspended bifunctors
fp : f∗(−) ⊗ f∗(∗) → f∗(− ⊗ ∗) is a morphism of duality preserving functors be-
tween the two functors defined by the compositions above. Thus, they induce the
same pairing on Witt groups: f∗(x.y) = Ifp(f∗(x).f∗(y)) for all x ∈ W((C1)K) and
y ∈ W((C1)M ).
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Proof: Let us consider the commutative diagram

(a) //

mf

GF ED

��

(b)

mf

(c)

OO

o
��

//

mf

(d)

OO

o
��

mf

(e)

��

//

12

(f)

o
��

≡

(g)

o
��

//

mf

(h)

o
��

∼

!!C
CC

CC
CC

C

mf

(i)

∼

aaBBBBBBBBBBBBBBBBBBBB
∼oo //

∼
  A

AA
AA

AA
A

mf

(j)

∼

aaBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB

∼

!!B
BB

BB
BB

B

(k)

��

//

mf

(l)

��

mf

∼

!!C
CC

CC
CC

C (m)

o
��

29

(n)∼oo

o
��

//

mf

(o)

o
��

(p) // (q) mf

∼

!!C
CC

CC
CC

C
(r)

��
mf

(s)∼oo

((PPPPPPPPPPPPPPP (t)∼oo //

12 ⊗ 13

(u)

��
(v) (w)∼oo

where the groups are:

(a) [f∗(−), f∗K]⊗ [f∗(∗),M ]
(b) [f∗(−⊗ ∗), [f∗(−), f∗K]⊗ [f∗(∗), f∗M ]⊗ f∗(−⊗ ∗)]
(c) f∗[−,K]⊗ f∗[∗,M ]
(d) [f∗(−⊗ ∗), f∗[−,K]⊗ f∗[∗,M ]⊗ f∗(−⊗ ∗)]
(e) f∗([−,K]⊗ [∗,M ])
(f) [f∗(−⊗ ∗), f∗([−,K]⊗ [∗,M ])⊗ f∗(−⊗ ∗)]
(g) f∗[−⊗ ∗, [−,K]⊗ [∗,M ]⊗−⊗ ∗]
(h) [f∗(−⊗ ∗), f∗([−,K]⊗ [∗,M ]⊗−⊗ ∗)]
(i) [f∗(−⊗ ∗), f∗[−,K]⊗ f∗[∗,M ]⊗ f∗(−)⊗ f∗(∗)]
(j) [f∗(−⊗ ∗), [f∗(−), f∗K]⊗ [f∗(∗), f∗M ]⊗ f∗(−)⊗ f∗(∗)]
(k) f∗[−⊗ ∗, [−,K]⊗−⊗ [∗,M ]⊗ ∗]
(l) [f∗(−⊗ ∗), f∗([−,K]⊗−⊗ [∗,M ]⊗ ∗)]

(m) [f∗(−)⊗ f∗(∗), f∗([−,K]⊗ [∗,M ]⊗−⊗ ∗)]
(n) [f∗(−)⊗ f∗(∗), f∗[−,K]⊗ f∗[∗,M ]⊗ f∗(−)⊗ f∗(∗)]
(o) [f∗(−)⊗ f∗(∗), [f∗(−), f∗K]⊗ [f∗(∗), f∗M ]⊗ f∗(−)⊗ f∗(∗)]
(p) f∗[−⊗ ∗,K ⊗M ]
(q) [f∗(−⊗ ∗), f∗(K ⊗M)]
(r) [f∗(−)⊗ f∗(∗), f∗([−,K]⊗−⊗ [∗,M ]⊗ ∗)]
(s) [f∗(−)⊗ f∗(∗), f∗([−,K]⊗−)⊗ f∗([∗,M ]⊗ ∗)]
(t) [f∗(−)⊗ f∗(∗), f∗[−,K]⊗ f∗(−)⊗ f∗[∗,M ]⊗ f∗(∗)]
(u) [f∗(−)⊗ f∗(∗), [f∗(−), f∗K]⊗ f∗(−)⊗ [f∗(∗), f∗M ]⊗ f∗(∗)]
(v) [f∗(−)⊗ f∗(∗), f∗(K ⊗M)]
(w) [f∗(−)⊗ f∗(∗), f∗K ⊗ f∗M ]

and the morphisms are the obvious ones. The required commutative diagram of
Definition 1.53 is the outer diagram given by (c),(w),(p) and (v). 2
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We have also seen in Theorem 1.75 Point 1 that {(f !)o, f∗} is a duality preserving
pair. Let Isp : (C2)f !K⊗f∗M → (C2)f∗(K⊗M) be the duality preserving functor
induced by sp (using Lemma 1.64). We have the following diagram of duality
preserving pairs.

(C1)K × (C1)M

{(f !)o×(f∗)o,f∗×f∗}
��

{−⊗∗} // (C1)K⊗M

{(f !)o,f∗}
��

(C2)f !K × (C2)f∗M
{−⊗∗}// (C2)f !K⊗f∗M

Isp // (C2)f !(K⊗M)

Proposition 1.91. If
(10) the morphism of suspended bifunctors sp : f !(−) ⊗ f∗(∗) → f !(− ⊗ ∗) is an
isomorphism

then it is an isomorphism of duality preserving pairs between the two pairs defined
above.

Proof: The proof involves exactly the same diagrams as in Proposition 1.90 after
replacing the isomorphism f∗(−)⊗f∗(∗) → f∗(−⊗∗) by f !(−)⊗f∗(∗) → f !(−⊗∗).
2

This last diagram of duality preserving pairs may be rewritten as follows (the
horizontal maps are pairs that are in fact functors):

(C2)f !K × (C1)M
Isp{Id⊗f∗} // (C2)f !(K⊗M)

(C1)K × (C1)M

{(f !×Id)o,f∗×Id}
OO

{Id⊗Id}
// (C1)K⊗M

{(f !)o,f∗}
OO

and by Theorem 1.55, taking {f∗ × Id, f∗ × Id} and {f∗, f∗} as the right adjoints
of the vertical pairs, we obtain the diagram

(C2)f !K × (C1)M
{f∗×Id}

��

Isp{Id⊗f∗} // (C2)f !(K⊗M)

{f∗}
��

(C1)K × (C1)M {Id⊗Id}
// (C1)K⊗M

only involving functors (and not pairs), and an isomorphism of duality preserving
pairs between the two compositions. To prove that this isomorphism of pairs is an
isomorphism of functors, we just have to check the condition of Definition 1.53. By
construction of the pair of morphisms, this amounts to check that

qp : f∗A⊗B → f∗(A⊗ f∗B)

and
f∗(A⊗ f∗B) → f∗(f !f∗A⊗ f∗B) → f∗f

!(f∗A⊗B) → f∗A⊗B

are inverse to each other. This follows from the commutative diagram

f∗A⊗B

η!
∗��

id

&&

qp //

mf

f∗(A⊗ f∗B)

η!
∗��

f∗f
!f∗A⊗B

ε!∗��

qp

∼
//

25

f∗(f !f∗A⊗ f∗B)
sp
��

f∗A⊗B f∗f
!(f∗A⊗B)

ε!∗oo

Summarizing, we have therefore proved the following.
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Theorem 1.92. (projection formula) Under the assumptions of the existence of
pull-backs for f∗ and M (1.69), the existence of push-forward for f∗ and K (1.75),
the existence of the product for (K,M) and (f !K, f∗M) (1.89) and Assumption
(10) for f∗ and f !, the maps f∗ and f∗ between Witt groups as defined in 1.69 and
1.75 satisfy

f∗(Isp(x.f∗(y))) = f∗(x).y

for x ∈ W((C2)f !K) and y ∈ W((C1)M ), where

Isp : W((C2)f !K⊗f∗M ) → W((C2)f !(K⊗M))

is the map induced by the isomorphism sp.

1.13. Composition. This section studies the behavior of pull-backs and push-
forwards with respect to composition. Let K be a category whose objects are
(suspended, triangulated) categories, and whose morphisms are (suspended, exact)
functors. Let B be another category, and let (−)∗ be a weak contravariant functor
from B to K, i.e. a functor, except that instead of having equalities f∗g∗ = (gf)∗

when f and g are composable, we only have isomorphisms of (suspended) functors
f∗g∗ → (gf)∗. We also require that (−)∗ sends the identity of an object to the
identity. When, moreover, the diagram

f∗g∗h∗

��

//

37

(gf)∗h∗

��
f∗(hg)∗ // (hgf)∗

is commutative, we say that the weak functor is associative.

Remark 1.93. An example for this setting is to take for B the category of schemes
(or regular schemes) and (X)∗ = Db(V ect(X)) (or (X)∗ = Db(OX −Mod)).

We assume that B and all categories in K are monoidal, with a right adjoint
to the tensor product, as explained in Section 1.7. We require that (−)∗ is a
monoidal associative weak functor, which means that each f∗ is symmetric monoidal
(Assumption (1)) and that the diagram

g∗f∗ ⊗ g∗f∗

��

//

38

g∗(f∗ ⊗ f∗) // g∗f∗(−⊗ ∗)

��
(fg)∗ ⊗ (fg)∗ // (fg)∗(−⊗ ∗)

commutes for any two composable f and g.
Let X be an object in B and K an object in (X)∗ satisfying (6) (K is dualizing

and DK is exact in the triangulated case). We denote by CX,K the (suspended, tri-
angulated) category with duality obtained by Proposition 1.62. Let Dual denote the
category whose objects are the CX,K and whose morphisms are the exact functors
which are duality preserving as in Definition 1.50. We then define a new category
B∗ whose objects are pairs (X,K) with X ∈ B, K as above, and whose morphisms
from (X,K) to (Y,M) are pairs (f, φ) where f : X → Y and φ : K → f∗M is an
isomorphism in (X)∗. In particular, f∗M must be dualizing (Assumption (7)). For
(g, ψ) : (Y,M) → (Z,N), the composition (g, ψ)(f, φ) is defined as (gf, χ), where
χ is the composition

K
φ // f∗M

f∗(ψ)// f∗g∗N // (gf)∗N .
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It is obvious that the composition is associative (using 37 ), hence this defines a
category. We then have a weak functor

{−}∗ : Bo → Dual
that sends (X,K) to CX,K and (f, φ) to the duality preserving functor from CY,M
to CX,K obtained by composing the duality preserving functor {f∗, fhM} from
Theorem 1.69 with the duality preserving functor {Id, φ}. We denote W{f, φ}∗ by
(f, φ)∗ and W(CX,K) by W(X,K).

Theorem 1.94. (composition of pull-backs) For any two composable (f, φ) and
(g, ψ), the isomorphism of functors f∗g∗ → (gf)∗ induces a morphism between
duality preserving functors from {f, φ}∗{g, ψ}∗ to {(g, ψ)(f, φ)}∗. Therefore, the
composition (−)∗ of the weak functor {−}∗ by the functor W is a functor (i.e.
strictly associative) with values in the category of Abelian groups.

Proof: First, we assume the isomorphisms φ and ψ are both the identity. Then
the claim amounts to check that the diagram

f∗g∗[−,K]

��

// f∗[g∗(−), g∗K] // [f∗g∗(−), f∗g∗K]

��
(gf)∗[−,K] // [(gf)∗(−), (gf)∗K] // [f∗g∗(−), (gf)∗K]

is commutative. This follows from diagram 38 by adjunctions. Now the general
case follows easily. 2

Definition 1.95. Let (−)∗ and (−)∗ be (suspended, triangulated) weak func-
tors with the same source and target, having opposite variances. We say that
((−)∗, (−)∗) is an adjoint couple of weak functors if (f∗, f∗) is a (suspended, tri-
angulated) adjoint couple for every f (in particular (−)∗ and (−)∗ coincide on
objects), and the diagrams

Id

��

//

39

(fg)∗(fg)∗

f∗f
∗ // f∗g∗g∗f∗

OO

and
g∗f∗f∗g∗

��

//

40

g∗g∗

��
(fg)∗(fg)∗ // Id

commute for any composable f and g.

As usual, the right (or left) adjoint is unique up to unique isomorphism.

Lemma 1.96. Assume that for any f∗, we are given a right (suspended, exact)
adjoint f∗ (which is the identity when f is the identity), then there is a unique
collection of isomorphisms (gf)∗ → g∗f∗ such that ((−)∗, (−)∗) forms an adjoint
couple of weak functors.

Proof: Apply Theorem 1.9 (or Theorem 1.36 in the suspended case) to (L,R) =
(f∗, f∗), (F1, G1) = (g∗, g∗), (F2, G2) = (Id, Id) and (L′, R′) = ((fg)∗, (fg)∗). This
gives the required isomorphism f∗g∗ → (fg)∗ and the diagrams 39 and 40 . 2

Lemma 1.97. The right (resp. left) adjoint of an associative weak functor is
associative.
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Proof: Left to the reader. 2

Let us now consider the subcategory B′ of B with the same objects, but whose
morphisms are only the f such that there exists a right adjoint for f∗, and this right
adjoint itself again has a right adjoint. We choose these successive right adjoints
f∗ and f ! for each morphism f (they are unique up to unique isomorphism), and
by Lemma 1.96, using (−)∗, we turn them into weak functors

(−)∗ : B′ → K (−)! : B′ → K
that are associative by Lemma 1.97.

By Theorem 1.75, under Assumptions (1) (2), (3), (5), (6) and (8) for M , there
is an adjoint couple of duality preserving pairs ({(f !)o, f∗}, {f∗}) from CX,f !M to
CY,M . By using the same for g and by composition, we get another adjoint couple

({(f !g!)o, f∗g∗}, {g∗f∗})
from CZ,K to Cf !g!K , if we choose M = g!K. We can compose again by the obvious
duality preserving functor to get to C(gf)!K . We denote the couple obtained this
way by

({(f !g!)o, f∗g∗}, {g∗f∗})′.
By Lemma 1.52, we can complete the isomorphism f∗g∗ → (gf)∗ into an iso-
morphism of duality preserving pair from {(f !g!)o, f∗g∗}′ to {((gf)!)o, (gf)∗}. By
construction, the isomorphism f !g! → (gf)! coincides with the one obtained above
when we turned (−)! into a weak functor, but we now also have the morphisms
that make this pair duality preserving. We therefore have two adjoint couples of
duality preserving pairs

({(f !g!)o, f∗g∗}, {g∗f∗, g∗f∗})′

and
({((gf)!)o, (gf)∗}′, {(gf)∗})

whose first terms are isomorphic. We thus get an isomorphism of duality preserving
pairs {g∗f∗} → {(gf)∗} by the uniqueness of the right adjoint. Of course, it coin-
cides by construction with the one obtained when turning (−)∗ into a weak functor,
but we now know that it is duality preserving. It remains to check the condition of
Definition 1.53 in order to have a morphism of duality preserving functors. This is
ensured by the following commutative diagram.

(gf)∗ //

��
id

$$

mf

g∗f∗

��
(gf)∗(gf)!(gf)∗ //

��
40′

g∗f∗(gf)!(gf)∗

��
(gf)∗ g∗f∗f

!g!(gf)∗oo

in which 40′ is 40 for the adjoint couple of weak functors ((−)∗, (−)!) composed
with (gf)∗ from the right.

We use the following notation: Let B! be the category whose objects are the
same pairs (X,K) as in B∗, but the morphisms are (f, φ) : (X,K) → (Y,M) such
that f ∈ B′ and φ is an isomorphism K → f !M (so again, f ! and M have to satisfy
Assumption (8)). The composition is defined as for B∗ and we have a (covariant)
weak functor

{−}∗ : B! → Dual
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defined in a similar way as {−}∗, but using the push-forward of Theorem 1.75.
As before, we denote by (−)∗ the composition of −∗ with W. Then the above
discussion may be summarized as follows.

Theorem 1.98. (composition of push-forwards) For any two composable (f, φ) and
(g, ψ) in B!, the isomorphism of functors g∗f∗ → (gf)∗ induces a morphism between
duality preserving functors from {g, ψ}∗{f, φ}∗ to {(g, ψ)(f, φ)}∗. Therefore, (−)∗,
defined as the composition of the weak functor {−}∗ with the functor W is a functor
(i.e. strictly associative).

Remark 1.99. The proof that we gave was when the isomorphisms φ and ψ are the
identity. Again, the general case follows easily.

Using the categories B! and B∗, Theorem 1.92 may be rephrased as follows.

Theorem 1.100. (projection formula) Let (f, φ) : (X,K) → (Y,M) be a morphism
in B∗ and (f, ψ) : (X,L) → (Y,N) a morphism in B!. Then, under Assumption
(10), we have an equality

(f, spN,M (φ⊗ ψ))∗(x.(f, φ)∗(y)) = (f, ψ)∗(x).y

in W i+j(Y,N ⊗M) for all x ∈ Wi(X,L) and y ∈ W j(Y,M) (recall the Definition
1.47 of graded Witt groups).

1.14. Base change. The last fundamental theorem that we will prove is base
change.

Consider a commutative diagram in B with g and ḡ in B′.

V

f̄

��

ḡ // Y

f

��
X g

// Z

Using Theorem 1.9 Point 2 (or its suspended version 1.36) with F1 = f∗, F2 = f̄∗,
L = ḡ∗, R = ḡ∗, L′ = g∗, R′ = g∗ and the isomorphism of (suspended) functors

ḡ∗f∗ → (fḡ)∗ = (gf̄)∗ → f̄∗g∗

for fL, we obtain a morphism

ε : f∗g∗ → ḡ∗f̄
∗

Assuming
(11) the morphism of functors ε is an isomorphism,
and applying the same theorem to F1 = f̄∗, F2 = f∗, L = ḡ∗, R = ḡ!, L′ = g∗,
R′ = g! and fL = ε−1, we obtain a morphism

γ : f̄∗g! → ḡ!f∗.

We also obtain several commutative diagrams, of which only the one corresponding
to F2

ḡ∗f̄
∗g!

γ

��
41

f∗g∗g
!εoo

��
ḡ∗ḡ

!f∗ // f∗

will be important for us. We now assume as well that
(12) the morphism of functors γ is an isomorphism.
We therefore have a duality preserving functor Iγ : CV,f̄∗g!K → CV,ḡ!f∗K for any
dualizing object K, whose underlying functor is just the identity. We now apply
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Theorem 1.9 to duality preserving pairs (as explained in Theorem 1.55) and choose
L = {(ḡ!)o, ḡ∗}, R = {ḡ∗}, L′ = {(g!)o, g∗}, R′ = {g∗}, F1 = {f∗}, F2 = Iγ{f̄∗}
(all of which were described in the previous section). To obtain the isomorphism
f ′L, we complete the morphism γ as a morphism of duality preserving pairs

Iγ{(f̄∗g!)o, f̄∗g∗} → {(ḡ!f∗)o, ḡ∗f∗}

as explained in Lemma 1.52 Point 1. The theorem thus gives a morphism of duality
preserving pairs

{f∗}{g∗} → {ḡ∗}{f̄∗}.

As usual, we want to show that it is a morphism of duality preserving functors
(Definition 1.53). By construction, we thus have to show that the maps ε and

ḡ∗f̄
∗ // ḡ∗f̄∗g!g∗

γ // ḡ∗ḡ!f∗g∗ // f∗g∗

are inverse to each other. This follows from this commutative diagram:

f∗g∗ //

��
id

%%

mf

ḡ∗f̄
∗

��
f∗g∗g

!g∗
ε
∼
//

��
41

ḡ∗f̄
∗g!g∗

��
f∗g∗ ḡ∗ḡ

!f∗g∗oo

We have therefore proved the following.

Theorem 1.101. (base change) Let (f, φ) and (f̄ , φ̄) be morphisms in B∗, (g, ψ),
and (ḡ, ψ̄) be morphisms in B! fitting in the diagram

CV,N
(ḡ,ψ̄) //

(f̄ ,φ̄)

��

CY,L

(f,φ)

��
CX,M

(g,ψ)
// CZ,K

such that fḡ = gf̄ ∈ B, such that Assumptions (11) and (12) are satisfied and that
the diagram

f̄∗M
f̄∗(ψ) // f̄∗g!K

γ
��N

φ̄ 33fffffffff

ψ̄
++XXXXXXXXXX

ḡ!L
ḡ!(φ)

// ḡ!f∗K

is commutative. Then the maps (f, φ)∗, (f̄ , φ̄)∗, (g, ψ)∗ and (ḡ, ψ̄)∗ satisfy

(ḡ, ψ̄)∗(f̄ , φ̄)∗ = (f, φ)∗(g, ψ)∗

(as morphisms of Witt groups).

Remark 1.102. As for Theorems 1.94 and 1.98, we have just proved the case where
φ and ψ are identities, and the general case easily follows.
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1.15. f ! of unit objects. In this section, we use the unit objects in the monoidal
categories to formulate the main theorems in a different way. In the application to
algebraic geometry, this will relate f∗ and f ! using canonical sheaves.

Recall that f∗ is assumed to be a monoidal functor for every f : X → Y . We
assume for simplicity in this section that the coherence map 1X → f∗(1Y ) is the
identity, where 1X and 1Y denote the unit objects in the monoidal categories CX
and CY .

For any morphism f : X → Y in B′, we define

ω′f = f !(1Y )

To every object X we associate a number dX and set df = dX−dY (in applications
dX will be the relative dimension of X over a base scheme). We then define

ωf = T df f !(1Y ).

For any two composable morphisms f and g in B′, let us denote by i′g,f the com-
position

ω′gf = (gf)!(1Z) ' f !g!(1Z) = f !(ω′g) ' f !(1Y )⊗ f∗(ω′g) = ω′f ⊗ f∗(ω′g)

(where we used Point 2 of Proposition 1.83) and

ig,f : ωgf
∼−→ ωf ⊗ f∗(ωg)

the composition obtained by the same chain of isomorphisms and then desuspend-
ing.

Lemma 1.103. For any composable morphisms X
f //Y

g //Z
h //V , the

diagram of isomorphisms

ωf ⊗ f∗(ωhg)
id⊗f∗ih,g // ωf ⊗ f∗(ωg ⊗ g∗(ωh))

o��
ωhgf

ihg,f 22ddddddddddd

ih,gf
--ZZZZZZZZZ

ωgf ⊗ (gf)∗(ωh)
ig,f⊗id

// ωf ⊗ f∗(ωg)⊗ (gf)∗(ωh)

is commutative. In other words, ig,f (as well as i′g,f ) satisfies a cocycle condition.

Proof: Left to the reader. 2

We define the category B∗ as the subcategory of B∗ having the same objects,
and whose morphisms (f, φ) : (X,M) → (Y,N) are such that f ∈ B′ and φ :
M → f∗(N) is an isomorphism. For any such morphism (f, φ) in B∗, we obtain a
push-forward

(1) W(X,ω′f ⊗M) → W(Y,N)

by Theorem 1.75, applying Lemma 1.64 to the isomorphism

ω′f ⊗M = f !1Y ⊗M
id⊗φ // f !1Y ⊗ f∗N

sp // f !(1Y ⊗N) ∼ // f !N.

Let us now assume that
(13) B′ has a final object called Pt, and we choose dPt = 0.

For each object X, we denote by πX the unique morphism X → Pt and define

ω′X = ωπX
ωX = T dXω′X .

Since πY f = πX , the morphism i′πY ,f
gives us the isomorphism

ω′X ' ω′f ⊗ f∗(ω′Y )
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and iπY ,f is also an isomorphism:

ωX ' ωf ⊗ f∗(ωY ).

From (1), using this last isomorphism in Lemma 1.64 and Lemma 1.63 to deal
with the shifting, we obtain, for any morphism (f, φ) : (X,M) → (Y,N) in B∗, an
“absolute” version of the push-forward

(2) Wi+dX (X,ωX ⊗M) → Wi+dY (Y, ωY ⊗N)

or,

(3) Wi+dX (c(X,M)) → Wi+dY (c(Y,N))

if we put c(X,M) = (X,ωX ⊗M).

Theorems 1.98, 1.92 and 1.101 then easily translate as follows:

Theorem 1.104. (composition of push-forwards) For any composition

X
(f,φ) // Y

(g,ψ) // Z

in B∗, the induced morphisms on Witt groups satisfy

(g, ψ)∗(f, φ)∗ = ((g, ψ)(f, φ))∗

from Wi+dX (c(X,M)) to Wi+dY (c(Y,N)).

Theorem 1.105. (projection formula) Let

(f, φ) : (X,M) → (Y,N)

be a morphism in B∗ and

(f, ψ) : (X,M) → (Y,N)

be a morphism in B∗ (same f). Then

(f, φ⊗ ψ)∗(x.(f, φ)∗(y)) = (f, ψ)∗(x).y ∈ Wi+j+dY (c(Y, L⊗N))

for any x ∈ Wi+dX (c(X,K)) and y ∈ Wj(Y,N).

Let us remark that when f , g, f̄ and ḡ satisfy Assumption (12), we have an
isomorphism

ω′ḡ = ḡ!(1Y ) ∼ // ḡ!f∗(1Z) ∼
γ // f̄∗g!(1Z) = f̄∗(ω′g)

and similarly

ωḡ ' f̄∗(ωg).

Theorem 1.106. (base change) Let (f, φ) and (f̄ , φ̄) be morphisms in B∗, (g, ψ)
and (ḡ, ψ̄) be morphisms in B∗ with sources and targets as on the diagram

c(V,N)

(f̄ ,φ̄)

��

(V,N)
(ḡ,ψ̄) // (Y, L) c(Y, L)

(f,φ)

��
c(X,M) (X,M)

(g,ψ)
// (Z,K) c(Z,K)
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such that fḡ = gf̄ ∈ B, such that (12) and (11) are satisfied and the diagram

ωV ⊗N
id⊗ψ̄ ��

φ̄ // f̄∗(ωX ⊗M)
f̄∗(id⊗ψ) // f̄∗(ωX ⊗ g∗K)

��
ωV ⊗ ḡ∗L

��

f̄∗(ωg ⊗ g∗(ωZ)⊗ g∗K)
��

ωḡ ⊗ ḡ∗(ωY )⊗ ḡ∗L

��

f̄∗(ωg)⊗ f̄∗ḡ∗(ωZ ⊗K)
��

ωḡ ⊗ ḡ∗(ωY ⊗ L) // f̄∗(ωg)⊗ ḡ∗(ωY ⊗ L)
id⊗ḡ∗(φ)

// f̄∗(ωg)⊗ ḡ∗f∗(ωZ ⊗K)

is commutative. Then we have an equality of morphisms

(ḡ, ψ̄)∗(f̄ , φ̄)∗ = (f, φ)∗(g, ψ)∗

from Wi+dX (c(X,M)) to Wi+dY (c(Y, L)).

We will also need the following.

Lemma 1.107. Let f , f̄ , g and ḡ be as in Theorem 1.106 and assume ω′Z is
invertible (see Proposition 1.86). Then we have isomorphisms

ω′V ' f̄(ω′X)⊗ (gf̄)∗(ω′Z)−1 ⊗ ḡ∗(ω′Y )

and
ωV ' f̄(ωX)⊗ (gf̄)∗(ωZ)−1 ⊗ ḡ∗(ωY ).

Proof: The first isomorphism is given by the chain of isomorphisms

ω′V ' ωḡ ⊗ ḡ∗(ω′Y ) ' ḡ!f∗(1Z)⊗ ḡ∗(ω′Y ) ' f̄∗g!(1Z)⊗ ḡ∗(ω′Y ) = f̄∗(ωg)⊗ ḡ∗(ω′Y )

' f̄∗(ω′X ⊗ g∗(ω′Z)−1)⊗ ḡ∗(ω′Y ) ' f̄∗(ω′X)⊗ f̄∗g∗(ωZ)−1 ⊗ ḡ∗(ω′Y )

' f̄∗(ω′X)⊗ (gf̄)∗(ωZ)−1 ⊗ ḡ∗(ω′Y )

and the second is just a shifted version of the first. 2

2. Application to the coherent Witt groups of schemes

2.1. Grothendieck duality. In this section, we introduce a few results from the
theory of Grothendieck duality, as developed in [11] or [26]. The reader should
be aware that we do not care about the sign conventions in these references, since
we only use results about the existence or invertibility of some functors which are
independent of the sign conventions.

Remark 2.1. We use homological complexes, because this is the convention usually
chosen in the articles on Witt groups following Balmer. Virtually all articles (in-
cluding [11] and [26]) on derived categories of sheaves use cohomological complexes.
When quoting results from these articles, we have applied the standard equivalence
from the category of cochains to the category of chains (re-indexing ( )n as ( )−n
with no additional signs, e.g. “bounded above” becomes “bounded below”). Never-
theless we stick to the notation Db and terms like “finite cohomological dimension”
rather than Db and “finite homological dimension”.

Recall that for any exact category E (e.g. E = OX -modules on a given scheme
X), the canonical functor from the derived category of bounded complexes Db(E)
to the subcategory of the unbounded derived category D(E) of complexes with
bounded cohomology is an equivalence of categories (see e.g. [12, Lemma 11.7]).
Thus, we shall use the same symbol for this latter category as well, and it is this
variant we work with when using the previous section.



WITT MOTIVES, TRANSFERS AND DÉVISSAGE 45

Let Reg be the full subcategory of the category of schemes in which the objects
are separated Noetherian regular schemes of finite Krull dimension, such that the
global sections of X contain 1/2.

Let D?
∗(X), where ? ∈ {∅,+,−, b} and ∗ ∈ {∅, qc, c} denote the derived category

(resp. cohomologically bounded above, below, above and below) of the category of
sheaves of OX -modules (resp. of quasi-coherent cohomology, coherent cohomology).
For X Noetherian, the inclusion Db(Qcoh(X)) '→ Db

qc(X) is an equivalence of
triangulated categories (see [11, Corollary II.7.19] and [25, section B.4], inducing
an equivalence Db

c(Qcoh(X)) '→ Db
c(X). It is the category Db

c(Qcoh(X)) used
in the original definition of coherent Witt groups [7]. Similarly, one shows that
Db(Coh(X)) '→ Db

c(X) is an equivalence of triangulated categories. We freely use
these equivalences without mentioning them.

In this section, we construct pull-backs (with respect to arbitrary maps between
regular Noetherian schemes of finite Krull dimension) and transfer maps between
(Grothendieck-)Witt groups with respect to proper morphisms and establish some
properties such as the base change and the projection formula. In contrast to K0,
the transfer maps for (Grothendieck-)Witt groups will shift the degree and twist the
duality. These transfer maps and their properties are then used for the construction
of the categories of Grothendieck-Witt motives and Witt motives.

Everything in the sequel is true both for GW and W , so we just state everything
for W .

We observe that in some very special cases there are already constructions that
deserve the name transfer map. In particular, for any projection map π : Pn×X →
X, Walter establishes maps W i(Pn ×X,π∗L(−n − 1)) → W i−n(X,L) [27, p. 24]
which using in particular Theorem 5.6, Proposition 5.11 and p.23/24 of loc. cit. can
be seen to be natural with respect to X. Also, there seems to be work in progress
by C. Walter on the construction of transfer maps in a very general setting (which
should presumably yield the same transfer maps as those we constructed). There
are also transfer constructions for Witt groups with respect to certain finite maps
and closed embeddings in the affine space [9], [29], but not for other projective
morphisms which is what we need.

One always has pullbacks for locally free (that is defined using complexes of
vector bundles) Witt groups. Recall that as X is Noetherian regular of finite
Krull dimension, the inclusion (Db(V ect(X)) → (Db

c(X)) together with the choice
of an injective resolution of a line bundle L on X gives rise to an equivalence
(Db(V ect(X)),Hom( , L)) '→ (Db

c(X), RHom( , L)) of triangulated categories
with duality, inducing a non-canonical isomorphism between the associated Witt
groups (the proof of [7, Corollary 2.17.2] for OX carries over to arbitrary line
bundles L). One also has a map f∗ : W ∗(Y,OY ) → W ∗(X,OX) between coherent
Witt groups for f : X → Y a flat morphism [8, p. 221].

2.1.1. Functors on the bounded derived category.

Proposition 2.2. Let X ∈ Reg.
(1) The tensor product on the category of complexes (see Appendix A) admits a

left (in both variables) derived functor which restricts to an exact bifunctor

(−⊗L∗) : Db
c(X)×Db

c(X) → Db
c(X).

It comes naturally equipped with a unit, an associativity and a symmetry
isomorphism satisfying all necessary axioms, thus turning Db

c(X) into a
symmetric monoidal category. The tensor product on the category of com-
plexes also admits a suspended bifunctor structure, which induces one on
⊗L.
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(2) The internal Hom on the category of complexes (see Appendix A) admits
a right (in both variables) derived functor which restricts to a suspended
bifunctor

RHom(∗,−) : Db
c(X)o ×Db

c(X) → Db
c(X).

(3) The adjunction between the usual tensor product of sheaves and the internal
Hom induce a suspended ACB (see Definition 1.37) (−⊗L∗,RHom(∗,−)).

Proof: By [11, Proposition II.4.3], the tensor product on the category of com-
plexes induces a bifunctor Db

c(X) × Db
c(X) → Dc(X), and since X ∈ Reg, every

coherent sheaf has a finite locally free resolution (see [23, §7, Point 1]), so the
bifunctor takes values in Db

c(X). The associativity, unit (OX) and symmetry iso-
morphisms are defined on the category of complexes (see Appendix A) and induce
the symmetric monoidal category structure on Db

c(X). The suspended bifunctor
structure is also induced from the category of complexes as introduced in Appendix
A. This proves Point 1.
The internal Hom on the category of complexes admits a right (in both variables)
derived functor Db

c(X) ×Db
c(X) → Dc(X), by [11, Proposition II.3.3], and again,

it takes values in Db
c(X) because X ∈ Reg. (Recall that there are two canonically

isomorphic definitions of RHom, namely RIRIIHom and RIIRIHom, see [11, p.
65/66 and 91]; we use the first one.) The existence of the suspended structure
follows from Proposition 1.39. This proves Point 2.
The suspended adjunction of Point 3 is induced by the one on complexes (see Ap-
pendix A). 2

Proposition 2.3. Let X,Y ∈ Reg and let f : X → Y . Then
(1) f∗ admits a left derived functor which restricts to

Lf∗ : Db
c(Y ) → Db

c(X).

(2) The canonical isomorphism f∗(A⊗B) → f∗(A)⊗f∗(B) on sheaves induces
an isomorphism of suspended functors

fp : Lf∗(−)⊗LLf∗(∗) → Lf∗(−⊗L∗)
and an isomorphism

Lf∗(OY ) → OX
which turns Lf∗ into a symmetric monoidal functor.

(3) For any composable morphisms f and g, we have an isomorphism Lf∗Lg∗ '
L(gf)∗. This turns L(−)∗ into an associative weak functor.

Proof: By [11, Proposition II.4.4], f∗ has a left derived functor from D+
c (X)

to D+
c (X). Since Y ∈ Reg, by [23, §7 Point 1] every coherent sheaf has a finite

resolution by locally free sheaves, which stay locally free by pull-back, so we can
restrict the functor from Db

c(X) to Db
c(Y ). This proves Point 1. The definition of

the morphism fp in Point 2 is Proposition II.5.9 in loc. cit. and checking that Lf∗

is symmetric monoidal is easy. Point 3 is [11, Proposition II.5.4] for the existence
of the isomorphism, and then the remark p. 60, Point 1 in loc. cit.. 2

Proposition 2.4. Let X,Y ∈ Reg and let f : X → Y be a proper morphism. Then
we have:

(1) The functor f∗ admits a right derived functor that restricts to

Rf∗ : Db
c(X) → Db

c(Y ).

(2) Rf∗ is a right adjoint of Lf∗.
(3) The functor Rf∗ admits a right adjoint

f ! : Db
c(Y ) → Db

c(X).
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Proof: By [11, Proposition II.2.2], f∗ has a right derived functor D−
c (X) →

D−
c (Y ). It restricts to a functor Db

c(X) → Db
c(Y ) since f∗ has finite cohomological

dimension (see e. g. loc. cit., p. 87). The fact that it is a right adjoint of Lf∗ is
Corollary II.5.11 in loc. cit. For Point 3, we use the following, which is the main
result of Grothendieck duality theory.

Theorem 2.5. [26, Theorem 1 (existence theorem)] Let f : X → Y be a proper
morphism of Noetherian schemes of finite Krull dimension. Then there is a functor
f ! : D−

qc(Y ) → D−
qc(X) and a morphism of functors Trf such that for all F ∈

Dqc(X) and G ∈ D−
qc(Y ) the morphism induced by Trf

ExtpX(F, f !G) → ExtpY (Rf∗F,G)

is an isomorphism for all p.

In particular, for p = 0, this gives the adjunction.

We now finish the proof of Point 3 of the proposition. The fact that f ! restricts
to Dc is [26, Lemma 1], and that it restricts to Db

c is obtained in the following way:
first, f !(OY ) is a dualizing complex by Corollary 3 of loc. cit., and since dualizing
complexes are shifted line bundles (see Proposition 2.10 below), it is bounded.
Then, Corollary 2 of loc. cit. gives us an isomorphism

f !(OY )⊗LLf∗(G) → f !G

so the fact that Lf∗ and ⊗L restrict to Db suffices to conclude (we don’t need f to
be of finite flat dimension in Corollary 2, because X and Y are regular). 2

Remark 2.6. Being part of an adjoint pair, the functor f ! : D+
qc(X) → D+

qc(Y ) and
the natural transformation Trf are unique up to unique isomorphism, see [26, p.
394]. There are at least two different ways to construct them and to prove the
isomorphism of the theorem (see also [18] for still another approach). One is to use
residual complexes as Hartshorne [11] does. The other is to use the techniques of
Verdier as done by Deligne in the appendix of [11].

We will need the following lemma to prove that some morphisms of functors are
isomorphisms.

Lemma 2.7. Let X be in Reg.
• Assume X is affine. The subcategory of complexes of coherent sheaves

in Db
c(X) is generated as a thick triangulated category (i.e. stable under

suspension, triangles and direct factors) by OX .
• Let F and F ′ be triangulated functors from Db

c(X), X affine, to some other
triangulated category. Any triangulated morphism of functors from F to F ′

is an isomorphism if it is an isomorphism on OX .

Proof: For Point 1, denote by L the category generated by OX . Free OX -
modules (of finite rank) are obviously in L, so locally free sheaves (that is vector
bundles) are in L as direct factors of free sheaves as X is affine. Next, any bounded
complex of locally free sheaves is in L by induction on the length of the complex:
there is an obvious triangle with the object of smallest degree in a complex, the
complex and the complex with the first object truncated. Since X is regular, we
can replace any coherent sheaf by a finite resolution of locally free sheaves, so any
coherent sheaf is in L. Finally, again by induction, any complex of coherent sheaves
is in L. Point 2 is an obvious consequence of Point 1, using [11, Proposition I.7.1,
(i)]. 2
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Proposition 2.8. Let f : Y → Z be a morphism in Reg, proper for Points 3 and
4. In Point 2, K and M are dualizing objects. In Point 5, f , f̄ , g : X → Z and
ḡ are in Reg and form a Cartesian diagram with g and ḡ proper and f and f̄ flat.
Then the following morphisms of functors are isomorphisms:

(1) the morphism fh : Lf∗RHom(−, ∗) → RHom(Lf∗(−), Lf∗(∗)), defined
as in Proposition 1.68, using Assumption (1), satisfied by Proposition 2.3
Point 2,

(2) the morphism d : RHom(−,K)⊗LRHom(∗,M) → RHom(−⊗L∗,K⊗LM)
defined as in Definition 1.78,

(3) the morphism qp : Lf∗(−)⊗L∗ → Lf∗(−⊗Lf∗(∗)), defined as in Propo-
sition 1.71, using moreover Assumption (2), satisfied by Proposition 2.4
Point 2,

(4) the morphism sp : f !(−)⊗LLf∗(∗) → f !(−⊗L∗), defined as in Proposition
1.74, using moreover Assumption (3), satisfied by Proposition 2.4 Point 3,
and Assumption (5) by the previous point,

(5) the morphisms ε : Lf∗Rg∗ → Rḡ∗Lf̄
∗ and γ : Lf̄∗g! → ḡ!Lf∗ defined as at

the beginning of Section 1.14.

Proof: We prove Point 4, a similar but easier proof applies to Points 1, 2 and 3.
For a fixed object A, we show that f !(A)⊗LLf∗(∗) → f !(A⊗L∗) is an isomorphism.
First, as we have a morphism between two functors with values complexes of sheaves
which commute with the restriction to open subschemes, it suffices to check that
the morphism is locally an isomorphism. Thus we may restrict to the case where Y
is affine. Then we apply Lemma 2.7, Point 2 to restrict to the case ∗ = OY , which
follows from Proposition 1.83. To prove Point 5, one observes that ε coincides with
the morphism defined in [2, p. 84, p. 285] and is thus an isomorphism by [1, p.
290]. The morphism γ coincides with the one considered in [26, p. 401] and thus is
an isomorphism by [26, Theorem 2]. 2

Remark 2.9. For the applications considered in this article (the construction of
Witt motives and the proof of dévissage), the hypotheses of Point 5 of Proposition
2.8 are satisfied. Nevertheless there might be other interesting situations where f
is not flat but ε and γ are still isomorphisms, and consequently Theorem 2.17 and
Corollary 2.18 still hold. By [1, p. 290], one knows that more generally ε is an
isomorphism provided TornOZ

(OX ,OY ) = 0 for all n > 0. Using the notations and
results of Section 1.15 and reducing to OZ as in the proof of Point 4 above, one
may show that γ is an isomorphism if f̄∗ωg ' ωḡ.

2.1.2. Dualizing complexes.

Proposition 2.10. (see [11, Theorem V.3.1]) Let X ∈ Reg. Then OX is a dual-
izing object and, furthermore, the dualizing objects in Db

c(X) are exactly the ones
isomorphic to shifted line bundles, that is considered as complexes concentrated in
a single degree.

Corollary 2.11. Let K be a dualizing object. Then Lf∗K is dualizing.

Proof: The pull-back of a shifted line bundle is a shifted line bundle, and
Lf∗K = f∗K as K is locally free. 2

Corollary 2.12. Let K be a dualizing object and f ∈ Reg be proper. Then f !K is
dualizing.

Proof: By the isomorphism sp (Proposition 2.8 Point 4) and the previous
corollary, we restrict to the case where K = OY , which is [26, Corollary 3]. 2
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2.2. Application to Witt groups. We now apply the formalism of Section 1,
using Grothendieck duality theory. Recall that we always work with coherent Witt
groups, which are non-canonically isomorphic to the usual Witt groups for regular
schemes.

2.2.1. Regular schemes. We choose B = Reg and we use the weak functor L(−)∗

described in Proposition 2.3, Point 3, to construct the category Reg∗ = B∗, as in
Section 1.13.

Theorem 2.13. (pull-backs) Let (f, φ) : (X,K) → (Y,M) be a morphism in Reg∗.
It induces a pull-back

(f, φ)∗ : W(Y,M) → W(X,K)

respecting composition. Furthermore, if M is a dualizing object,

(f, id) : (X,Lf∗M) → (Y,M)

is a morphism in Reg∗ so it induces a pull-back

f∗ := (f, id)∗ : W(Y,M) → W(X,Lf∗M).

Proof: All assumptions of Theorem 1.69 and Theorem 1.94 are satisfied by
Proposition 2.3 and Proposition 2.8, Point 1. To prove that (f, id) is indeed in
Reg∗, we just need to prove that Lf∗M = f∗M is dualizing, which is just Corollary
2.11. 2

The product on Witt groups is defined thanks to Proposition 1.89, using Propo-
sition 2.8 Point 2.

Theorem 2.14. (compatibility with products) The pull-back satisfies (f, φ)∗(x.y) =
(f, φ)∗(x).(f, φ)∗(y).

Proof: This is exactly Proposition 1.90. 2

We define the category Reg! = B! as in Section 1.13.

Theorem 2.15. (push-forwards) To any morphism (f, φ) : (X,K) → (Y,M) in
Reg!, we associate a push-forward

(f, φ)∗ : W(X,K) → W(Y,M)

by Theorem 1.75. It respects composition by Theorem 1.98. Let f : X → Y be
a proper morphism with X,Y ∈ Reg, and M be a dualizing object on Y . Then
(f, id) : (X, f !M) → (Y,M) is a morphism in Reg!. In particular, it gives a push-
forward

f∗ := (f, id)∗ : W(X, f !M) → W(Y,M)

Proof: For a proper morphism f , Lf∗ admits a right adjoint Rf∗, which admits
a right adjoint f ! by 2.4, Points 2 and 3. This establishes Assumptions (1)-(3).
Assumption (5) needed in Theorem 1.75 is Point 3 in Proposition 2.8. Finally, f !M
is dualizing by Corollary 2.12. 2

We thus have achieved the definition of push-forwards maps for Witt groups.

Theorem 2.16. (projection formula) The pull-back and push-forward satisfy the
projection formula (see Theorem 1.92).

Proof: The morphism sp : f !(−)⊗LLf∗(∗) → f !(−⊗L∗) is an isomorphism by
Proposition 2.8, Point 4. 2
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Theorem 2.17. (base change) Let f, f̄ , g, ḡ ∈ Reg with f flat and g proper such
that the diagram

V

f̄

��

ḡ // Y

f

��
X g

// Z

is Cartesian. Assume that the four schemes are equipped with dualizing complexes
such that the morphisms above extend to (f, φ), (f̄ , φ̄),(g, ψ) and (ḡ, ψ̄) as in The-
orem 1.101, making the pentagon there commutative. Then we have an equality

(ḡ, ψ̄)∗(f̄ , φ̄)∗ = (f, φ)∗(g, ψ)∗

between morphisms of Witt groups.

Proof: This follows from Theorem 1.101 as Assumptions (11) and (12) are
satisfied by Proposition 2.8, Point 5. 2

In practice, this reads as follows.

Corollary 2.18. Assume that we have a Cartesian square in Reg as in Theorem
2.17, and let K be a line bundle on Z. Then we have a commutative square of Witt
groups

W∗(V,Lf̄∗g!K)
{ḡ,γ}∗ //W∗(Y, Lf∗K)

W∗(X, g!K) g∗
//

f̄∗

OO

W∗(Z,K)

f∗

OO

Proof: This follows immediately from Theorem 2.17. 2

2.2.2. Smooth schemes over a regular base. Let S ∈ Reg be a connected scheme.
We denote by Sm/S the full subcategory of the category of schemes over S whose
objects are smooth and equidimensional over S. In particular, every object of
Sm/S is also in Reg. For every scheme X ∈ Sm/S, we define dX as the relative
dimension of the structural morphism of X over S.

Proposition 2.19. Let X ∈ Sm/S. Let ωX be the canonical sheaf of X, i.e. the
maximum exterior power of the sheaf Ω1

X of differentials of X (which is free because
X is smooth over S). Then, (πX)!(OS) ' T dXωX .

Proof: By a theorem of Nagata [16], [17], [13] the structural morphism πX

admits a factorization X
i→ PN

S

πPN→ S for some suitable N , where i is an open
immersion. Now the claim follows from [26, Theorem 3] (see also [11, p. 144]). 2

We are therefore in the situation of Section 1.15, and the sheaf ωX found there
can be identified with the canonical sheaf ωX for any scheme X ∈ Sm/S. We can
define the category (Sm/S)∗ as B∗ in Section 1.15.

Theorem 2.20. Equation 2 of Section 1.15 defines a push-forward along any mor-
phism f in Sm/S

f∗ : Wi+dX (X,ωX) → Wi+dY (Y, ωY )

respecting composition, the projection formula and base change as in Theorems
1.104, 1.105 and 1.106.
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2.3. Witt motives. We now define the category of (pure) Witt motives, inspired
by [15]. In this section, we will drop certain canonical isomorphisms between dual-
izing objects from the notation. The isomorphisms of triangulated categories with
dualities that are thus hidden are completely trivial, namely those arising from
Lemma 1.64. This makes the proofs more synthetic and readable. The results and
constructions hold in full generality, without those identifications. We also drop
the derived notation in the tensor product as we work with line bundles anyway.

Let L,L′, M,M ′ and N,N ′ be line bundles over X, Y and Z, respectively, and
assume we have morphisms pX/Z : X → Z and pY/Z : Y → Z. Let V = X ×Z Y
be the Cartesian product of X by Y over Z. We denote L�NM the vector bundle
p∗V/X(L)⊗ (pV/X ◦ pX/Z)∗(N)⊗ p∗V/Y (M) over X×Z Y . When we write L�M , we
mean that Z is the point and that N is trivial. We therefore get a vector bundle
over X × Y . We identify

• (L�N M)⊗ (L′ �N ′ M
′) = (L⊗ L′) �N⊗N ′ (M ⊗M ′)

• ωX×ZY = ωX �ω−1
Z
ωY (see Lemma 1.107)

When f : X ′ → X and g : Y ′ → Y , we also identify
• f∗(OX) = OX′
• (f × g)∗(L�M) = f∗L� g∗M.

Finally, we denote by L−1 the dual line bundle RHom(L,OX) of L and we identify
• L−1 ⊗ L = OX (see Proposition 1.86).

Definition 2.21. Let PSm/S be the full subcategory of Sm/S whose objects are
proper over S. As at the beginning of Section 1.13, let (PSm/S)∗ be the category
of couples (X,L) with X an object of PSm/S and L a dualizing complex on X
(which is isomorphic to a shifted line bundle by Proposition 2.10). By definition, the
category WPSm/S has the same objects as (PSm/S)∗, and the set of morphisms
(called W-correspondences) between two objects is the Abelian group defined by

HomWPSm/S((X,L), (Y,M)) = WdX (X × Y, (ωX ⊗ L−1) �M).

For a ∈ HomWPSm/S((X,L), (Y,M)) and b ∈ HomWPSm/S((Y,M), (Z,N)) the
composition ba is defined as

(πXZ , IdL−1�OY �(ω−1
Z ⊗N))∗

((πY Z , IdOX�(ωY ⊗M−1)�N )∗(b).(πXY , Id(ωX⊗L−1)�M�OZ
)∗(a)).

Proposition 2.22. The above composition law in WPSm/S is associative and
any object admits an identity automorphism, so WPSm/S really is a category.

Proof: The proof of associativity is the usual proof of the associativity of
correspondences, as in [15, §2, Lemma p. 446]. It just uses the composition of
the pull-backs and push-forwards, the base change and the projection formula.
The identity of (X,L) is given by (∆X , Idω−1

X
)∗(1X) (recall that 1X is the class

in W0(X,OX) of the one dimensional canonical form on OX described in Lemma
1.84). Again, the proof that it is an identity is a generalization of the classical
one. In fact, it is a particular case of the existence of graphs (see Proposition 2.23
below). 2

We can now construct the graph functor.

Proposition 2.23. There is a contravariant functor Γ from the category (PSm/S)∗

to WPSm/S. It is the identity on objects, and it sends a morphism (f, φ) :
(X,L) → (Y,M) to (γf , (φ∨)−1⊗ IdL⊗ Idω−1

X
)∗(1X) ∈ WdY (Y ×X, (ωY ⊗M−1)�

L) = Hom((Y,M), (X,L)), where γf : X → Y × X is the graph morphism (it
is always proper as all considered varieties are separated). By φ∨, we mean the
morphism dual to φ, going from L−1 to f∗(M)−1.
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Proof: This functor respects the composition. This follows from standard
arguments, as in [15, §2, Proposition p. 447]. 2

We now define a realization functor to the category of graded Abelian groups.

Definition 2.24. We define the covariant functor R from WPSm/S to the cate-
gory of Abelian groups by setting R(X,L) = W0(X,L) and

R(c) = (x 7→ (pY )∗(p∗X(x).c))

for an element c ∈ Hom((X,L), (Y,M)).

Remark 2.25. The functor R respects the composition because it coincides with
the functor Hom(Pt,−), where Pt is the base scheme S equipped with the trivial
line bundle. In particular, any motivic isomorphism induces an isomorphism on the
realizations. Observe also that the composition R ◦ Γ sends a morphism (f, φ) to
(f, φ)∗.

We can define a monoidal structure on this category by setting (X,L)⊗(Y,M) =
(X × Y, L�M). It is rigid, and the dual of an object (X,L) is given by (X,L)∨ =
(X,ωX ⊗ T−dXL−1).

Remark 2.26. Let T i(X,L) denote the object (X,T iL), for i ∈ Z. We have
R(T i(X,L)) ' Wi(X,L). It is interesting to note that TPt behaves like a Tate ob-
ject in the category WPSm/S, i.e., tensoring with it shifts the degree of the Witt
groups, since TPt⊗ (X,L) ' T (X,L). Its inverse T−1Pt also lies in WPSm/S.

2.4. Effective Witt Motives. We now define the category (WPSm/S)eff of
effective Witt motives. It is just the pseudo-Abelianized completion of the previ-
ous category. For a definition of the pseudo-Abelian completion, see e. g. [15,
§5]. Recall that the objects are just pairs ((X,L), p) where p is an idempotent in
End(X,L) and the morphisms between ((X,L), p) and ((Y,L), q) are given by the
quotient of the subgroup of HomWPSm/S((X,L), (Y, L)) given by the elements f
such that fp = qf by the subgroup of elements f such that fp = qf = 0. It
contains WPSm/S as the full subcategory of objects for which p = Id.

Remark 2.27. We can extend the realization functor R to (WPSm/S)eff because
of the universal property of the pseudo-Abelian completion. More precisely, we set
R((X,L), p) = kerR(p) on objects.

3. Dévissage

Assume that f : Z → X is a closed embedding of equidimensional varieties in
Reg of codimension d and L is a line bundle on X. Then by Theorem 1.75

{Rf∗, rL} : Db
c(Z)f !L → Db

c(X)L

is a functor of triangulated categories with duality. The map {Rf∗, rL} obviously
factors through the full triangulated subcategory with duality Db

c,Z(X)f !L which
by definition consists of complexes whose homology has support on Z. We denote
its Witt groups by W ∗

Z(X,L). The goal of this section is to prove the following
dévissage theorem for Witt groups.

Theorem 3.1. (dévissage) In the above situation, the map

f∗ : W ∗(Z, f !L) →W ∗
Z(X,L)

induced by the functor of triangulated categories with duality

{Rf∗, rL} : Db
c(Z)f !L → Db

c,Z(X)L

is an isomorphism.
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Proof: We roughly follow the classical strategy (as for K-theory) as it is de-
veloped for Witt groups in [7, section 4]. First one replaces [7, Theorem 4.2] by
Theorem 2.15. Then one considers the corresponding two long exact sequences
arising from the filtration by the codimension of support as in [7, p. 130]. Of
course, one needs to twist correctly the dualities (by L for X and f !L for Z) in
this sequence, as well as everywhere else, but these twists don’t change anything
in the proof. We are thus reduced to show the claim on the top of page 131 of loc.
cit. with B/J and B replaced by Z and X. Replace [7, Lemma 4.3] by Theorem
1.106 (which applies as closed embeddings are proper and localizations are flat).
We therefore obtain the following commutative diagram

W p+q((Db
c(Z)(p)/Db

c(Z)(p+1))f !L)
γZ //

f∗

��

⊕x∈Z(p)W p+q
mx

(OZ,x, f !L)

⊕(fx)∗

��
W p+q(Db

c,Z(X)(p+d)/Db
c,Z(X)(p+d+1), ∗L)

γX // ⊕x∈Z∩X(p+d)W p+q
mx

(OX,x, L)

which is similar to the one of [7, 4.2.3]. In particular, Db(X)(p) denotes com-
plexes with cohomology support in codimension ≥ p and X(p) denotes points in
codimension p. The maximal ideals of the regular local rings OX,x and OZ,x are
both denoted by mx (observe that k := OX,x/mx

∼= OZ,x/mx) and γX and γZ
are induced by localization. They are isomorphisms by [7, Theorem 3.12], so we
are reduced to show that ⊕(fx)∗ is an isomorphism. This follows from Lemma
3.2 below applied to R = OZ,x and to R = OX,x and the closed embeddings
g : Spec(k) → Spec(OZ,x) and (fx ◦ g) : Spec(k) → Spec(OX,x). Indeed, this shows
that fx,∗ fits in a commutative triangle of transfer morphisms

W p+q(k, (fx ◦ g)!L)
g∗ //

(fx◦g)∗

))SSSSSSSSSSSSSS
W p+q
mx

(OZ,x, f !
xL)

(fx)∗

��
W p+q
mx

(OX,x, L)

in which the two other morphisms are isomorphisms. Observe that we can’t apply
[7, Lemma 4.4] directly as the transfer morphism of loc. cit. is not obviously the
same as ours. 2

Lemma 3.2. Let R ∈ Reg be a local ring of dimension d with maximal ideal
m and residue field R/m = k and L a line bundle (i. e., a free module of rank
one) on Spec(R). Then the transfer morphism with respect to the closed embedding
h : Spec(k) → Spec(R) induces an isomorphism

h∗ : W ∗(k, h!L)
∼=→W ∗

m(R,L).

Proof: We have full inclusions of categories Mss
fl (R) ⊂ Mfl(R) ⊂ M(R),

where M(R) is the category of R-modules of finite type, Mfl(R) the subcate-
gory of objects of finite length, and Mss

fl (R) those that are semi-simple (i.e. a
finite direct sum of objects of length 0, i.e. finite dimensional vector spaces over
k). The morphism of Witt groups Rh∗ is given (up to the canonical equivalences
Db(M(k))

∼=→ Db
c(Spec(k)) and Db

m(M(R))
∼=→ Db

c,m(Spec(R))) by the following
composition of morphisms of triangulated categories with duality:

Db(M(k),RHom(−, h!L))
(Rh∗,rL)−→ Db(Mss

fl (R),RHom(−, L)) i1→

Db(Mfl(R),RHom(−, L)) i2→ Db
m(M(R),RHom(−, L))
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where i1 and i2 are the obvious inclusions. Here we have used that the duality
RHom(−, L) restricts to Db(Mfl(R)) and to Db(Mss

fl (R)) by [7, Lemma 3.8]. Note
that the duality Xfg in loc. cit. is by definition the same as RHom(−, L) as injective
resolutions are unique up to unique chain homotopy equivalence. (The signs in the
bidual isomorphism are the same by the choices made in Appendix A.) Thus the
morphism i2 is an isomorphism because it coincides with the one in [7, Lemma 3.9].
The morphism h∗ is an isomorphism already on the underlying triangulated (and
even exact) categories. We are left with i1, for which we use the following:

Theorem 3.3. Let (A, D,$) be an Abelian category with exact duality D, and let
Ass be the full subcategory of semi-simple objects. Then D restricts to Ass, and the
inclusion Ass ⊂ A induces an isomorphism on the i-th Witt group of the derived
categories (with the induced duality) for all i.

Proof: The result follows from the classical dévissage theorem of Quebbemann-
Scharlau-Schulte [5, Proposition 5.1] for the even Witt groups, since the “derived”
Witt groups coincide with the classical ones by [4, Theorem 4.3]. The odd Witt
groups are zero in both cases by [5, Proposition 5.2], so there is nothing to prove. 2

To apply this in our context, up to renumbering of the Witt groups, it suffices
to show that RHom(−, T dL) (and the bidual isomorphism) is induced by a duality
on the underlying Abelian categories. This follows from [7, Theorem 3.10]. 2

We write j : X − Z → X for the open inclusion of the complement. As usual,
dévissage implies (or improves) a localization exact sequence.

Corollary 3.4. (localization) In the above situation, we have a long exact sequence

· · · ∂→Wn(Z, f !L)
f∗→Wn(X,L)

j∗→Wn(X − Z, j∗L) ∂→Wn+1(Z, f !L) → · · ·

Proof: By definition resp. construction, we have a short exact sequence of

triangulated categories with dualities Db
c,Z(X)L −→ Db

c(X)L
j∗−→ Db

c(X − Z)j∗L.
Hence Balmer’s abstract localization theorem [3] and our dévissage theorem yield
the claim. 2

4. Cellular varieties

This section provides the computation of Witt groups of cellular varieties, that
is varieties admitting a filtration as in Definition 4.1 below. The proof requires
the transfer maps and the dévissage theorem established in the previous sections.
Examples of cellular varieties include projective homogeneous varieties G/P where
G is a linear algebraic group (not necessarily split) and P a parabolic subgroup (see
[21, 4.3] and the references given there). Our proof is inspired by the one of [21],
and we will assume that the reader who tries to understand the proof below has a
copy of their article at hand. (That it might be possible to combine their methods
with ours to obtain such computations was already mentioned at the beginning of
section 7 of loc. cit..)

Definition 4.1. A cellular decomposition of a smooth projective variety X over
a field k is a filtration X = X0 ⊃ X1 ⊃ ...Xi ⊃ Xi+1... ⊃ Xn ⊃ 0 by closed
subvarieties such that each complement Ei := Xi − Xi+1 is the total space of an
affine fibration pi : Ei → Yi where Yi is a smooth projective variety.

Theorem 4.2. Let X be a smooth projective variety over k with a cellular de-
composition as in Definition 4.1 and assume that char(k) = 0. Let further L be a
dualizing complex on X. Assume that on each Yi there is a dualizing complex Mi
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such that p̄i∗Mi
∼= (jifi)!L where jifi and p̄i are the morphisms introduced in the

proof below. Then we have an isomorphism of Witt groups

W ∗(X,L) ∼= ⊕ni=0W
∗(Yi,Mi).

Proof: Let hi : Ei → X − Xi+1 and ui : X − Xi+1 → X be the obvious em-
beddings. Using localization for (coherent) Witt groups with supports [8, Theorem
2.4.b)] (the proof given there works for other dualizing complexes than the struc-

tural sheaf), we obtain a long exact sequence ... → W ∗
Xi+1

(X,L) → W ∗
Xi

(X,L)
u∗i→

W ∗(X−Xi+1, u
∗
iL) → ... Applying the dévissage Theorem 3.1 and strong homotopy

invariance [8, Theorem 4.2] (which again holds for dualizing complexes in general)
one deduces similar to Step I of the proof of [21, Theorem 4.4] a long exact sequence
...→ W ∗

Xi+1
(X,L) → W ∗

Xi
(X,L) αi→ W ∗(Yi,Mi) → ... where αi := (p∗i )

−1(hi)−1
∗ u∗i .

As in loc. cit., if we can show that each αi admits a splitting Θi, then the claim
follows. For this, consider the following diagram consisting of two Cartesian squares
and a commutative triangle as in Step II of loc. cit.

X X −Xi+1
uioo

Xi

ji

OO

Eiqi

oo

hi

OO

Wi

fi

OO

p̄i
$$J

JJJJJJJJJ Ei

id

OO

gioo

pi

��
Yi

in which all varieties except possibly Xi are smooth. From Corollary 2.18 we
deduce a commutative diagram

W ∗
Xi

(X,L)
u∗i // W ∗

Ei
(X −Xi+1, u

∗
iL)

W ∗(Wi, (jifi)!L)

(jifi)∗

OO

g∗i // W ∗(Ei, g∗i (jifi)
!L)

{hi∗,γ}'

OO

W ∗(Yi,Mi)

p∗i'

OO

p̄i
∗

iiSSSSSSSSSSSSSSS

which shows that Θi := (jifi)∗p̄i∗ yields the desired splitting. 2

Given a concrete example of a cellular variety, the twists and shifts of the duality
arising from f !

i may be computed using Proposition 2.8 Point 4 and Proposition
2.19. Observe also that Theorem 4.2 may be rephrased as a decomposition of the
Witt motive of X in WPSm/k similar to [21, section 5].

Applying Theorem 4.2 it is possible to recover certain computations about pro-
jective spaces and Nenashev’s [19] computations of Witt groups of completely split
quadrics. Observe also that in many cases the Wi may be constructed without
assuming resolution of singularities (that is char(k) = 0), compare [21, section 7].

Appendix A. Signs in the category of complexes

In this section, we explain how signs in the category of complexes of an Abelian
category A with a tensor product • adjoint to an internal Hom (denoted by h)
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have to be chosen in order to obtain an exact tensor product adjoint to an internal
Hom on the derived category. We use homological complexes, as it is the usual
convention in the articles about Witt groups, so the differential of a complex is

dAi : Ai → Ai−1.

The suspension functor T translates as in

(TA)n = An−1.

The groups in the tensor product and the internal Hom are given by

(A⊗B)n =
⊕
i+j=n

Ai •Bj

and

[A,B]n =
∏

j−i=n
h(Ai, Bj).

In table 1, we give a possible choice of signs for the translation functor, tensor
product, the symmetry functor and the adjunction morphism (denoted by ath),
and what it induces on the internal Hom using Proposition 1.39. Balmer, Gille and

Definition of Sign Choice Locus

TA εTi −1 dTAi+1 = εTi diA

A⊗B ε1⊗i,j 1 ε1⊗i,j d
A
i • idBj

ε2⊗i,j (−1)i ε2⊗i,j idAi
• dBj

tp1,A,B εtp1i,j 1 εtp1i,j idAi•Bj

tp2,A,B εtp2i,j (−1)i εtp2i,j idAi•Bj

cA,B εci,j (−1)ij εci,j(Ai •Bj → Bj •Ai)
athA,B,C εathi,j (−1)i(i−1)/2 εathi,j (Hom(Ai •Bj , Ci+j)

→ Hom(Ai, h(Bj , Ci+j)))

[A,B] ε1hi,j 1 ε1hi,j(d
A
i+1)

]

ε2hi,j (−1)i+j+1 ε2hi,j(d
B
j )]

th1,A,B εth1
i,j 1 εth1i,j idh(Ai,Bj)

th2,A,B εth2
i,j (−1)i+j εth2i,j idh(Ai,Bj)

Table 1. Sign definitions

Nenashev [3], [4],[7], [10] always consider strict dualities, that is εth1 = 1. The signs
chosen in [4, §2.6] imply that ε1hi,0 = 1. The choices made by [10, Example 1.4] are
ε1⊗i,j = 1 and ε2⊗i,j = (−1)i. In [7, p. 111] the signs ε1hi,j = 1 and ε2hi,j = (−1)i+j+1 are
chosen. Finally, the sign chosen for $ in [7, p. 112] corresponds via our definition
of $ (see Section 1.8) to the equality εathj−i,iε

ath
i,j−iε

c
j−i,i = (−1)j(j−1)/2. It is possible

to choose the signs in a way compatible with all these choices and our formalism.
It is given in the third column of Table 1. More precisely, we have the following
theorem.
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Theorem A.1. Let a, b ∈ {+1,−1}. Then

ε1⊗i,j = 1 εtp1i,j = a

ε2⊗i,j = (−1)i εtp2i,j = a(−1)i

ε1hi,j = 1 εth1i,j = 1
ε2hi,j = (−1)i+j+1 εth2i,j = a(−1)i+j

εathi,j = b(−1)i(i−1)/2 εci,j = (−1)ij

εTi = −1

satisfies all equalities of Table 2 as well as εathj−i,iε
ath
i,j−iε

c
j−i,i = (−1)j(j−1)/2. There-

fore, for any exact category E the category of chain complexes Ch(E) and its bounded
variant Chb(E) may be equipped with the the entire structure discussed in the first
seven subsections of the first section. Moreover, all signs may be chosen in a com-
patible way with all the above sign choices of Balmer, Gille and Nenashev.

Proof: Straightforward. 2

In the following table 2, we state the compatibility that these signs must satisfy
for that all axioms considered in section 1 become true. We assume that the
associativity isomorphism in the monoidal category of complexes comes without
sign, so the pentagon of [14, p. 162] trivially commutes.

compatibility reason

1 ε1⊗i,j ε
1⊗
i,j−1ε

2⊗
i,j ε

2⊗
i−1,j = −1 A⊗B is a complex

2 ε1hi,jε
1h
i,j−1ε

2h
i,jε

2h
i+1,j = −1 [A,B] is a complex

3 εTi ε
T
i+jε

1⊗
i,j ε

1⊗
i+1,jε

tp1
i,j ε

tp1
i−1,j = 1 tp1,A,B is a morphism

4 εTi+jε
2⊗
i,j ε

2⊗
i+1,jε

tp1
i,j ε

tp1
i,j−1 = 1

5 εTj ε
T
i+jε

2⊗
i,j ε

2⊗
i,j+1ε

tp2
i,j ε

tp2
i,j−1 = 1 tp2,A,B is a morphism

6 εTi+jε
1⊗
i,j ε

1⊗
i,j+1ε

tp2
i,j ε

tp2
i−1,j = 1

7 εtp1i,j ε
tp1
i,j+1ε

tp2
i,j ε

tp2
i+1,j = −1 the square in Definition 1.31

anti-commutes

8 ε1⊗i,j ε
2⊗
i,j ε

1h
j−1,i+j−1ε

ath
i,j−1ε

ath
i−1,j = −1 ath is well defined

9 ε1⊗i,j ε
2h
j,i+jε

ath
i−1,jε

ath
i,j = 1

10 ε1⊗i,j ε
2⊗
j,i ε

c
i,jε

c
i−1,j = 1 cA,B is a morphism

11 ε1⊗j,i ε
2⊗
i,j ε

c
i,jε

c
i,j−1 = 1

12 εci,jε
c
j,i = 1 c is self-inverse

13 εcj,kε
c
i,k = εci+j,k the square sm commutes

14 εtp1i,j ε
tp2
j,i ε

c
i,jε

c
i+1,j = 1 the square c commutes

Table 2. Sign definitions

If the Abelian (or more generally exact) category E one considers has enough
injective and projective objects, one obtains a left derived functor of the tensor
product and a right derived functor of the internal Hom. These are studied in
further detail in section 2.
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